• Title/Summary/Keyword: torque controllers

Search Result 146, Processing Time 0.026 seconds

A new torque sharing function method for torque control of a switched reluctance motor (토크 공유 함수법을 이용한 새로운 방식의 스위치드 리럭턴스 모터의 토크 제어)

  • 최창환;이대옥;박기환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.262-262
    • /
    • 2000
  • This paper presents a new torque sharing function method that extends the definition region of the conventional TSF to both the positive and negative torque production regions. By using this definition, all kinds of the control inputs that consider switching on/off angle control as well as the current profiling can be described. A parametrized representation of the current profiles is proposed by using a series of B-spline functions, which reduces memory requirement and enables additional controllers. Optimal determination of the TSFs are also investigated for various control objectives. Moreover, the comparison study of each objective is presented. Since this method generalizes all of the possible control input, the current and torque profiles obtained from the optimization are the most suitable control input that satisfy the objectives.

  • PDF

Nonlinear Control Design for Reducing Shifting Torque in Automatic Transmission (자동변속기의 과도토크 저감을 위한 비선형 제어기설계)

  • Kim, D.H.;Lee, K.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.95-104
    • /
    • 1997
  • We consider controller design problem to enhance shift quality for automatic transmission. A dynamic modeling related to shifting (mainly 2-3 up-shift) is constructed and nonlinear robust controllers are designed to reduce output torque during shifting. Suggesting a new hydraulic circuit enabling the direct clutch drive, the control activity is extended and more implementable than the conventional design. The designed robust controllers overcome the unmodeled dynamics and the uncertainty embending in the system. Moreover, the dynamic effect between the clutch pressure and the PWM valve duty is considered via singular perturbation technique.

  • PDF

Dynamic Performance Simulation of Diesel Engine for Underwater Vehicle (수중함용 디젤엔진의 동적 성능 시뮬레이션)

  • 정찬희;양승윤;조상훈;김성용
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.41-51
    • /
    • 2001
  • In this paper, the mathematical modeling and the design of controllers were performed for the dynamic performance simulation of the diesel engine for underwater vehicle. Nonlinear equations are acquired through the mathematical modeling using mean torque production model technique. Three kinds of controllers were designed for the perform simulation of the engine model. As the result of simulation, it was confirmed that each controller can be applied with regard to system characteristics and desired conditions etc.

  • PDF

Obstacle Avoidance of Underactuated Robot Manipulators Using Switching Computed Torque Method

  • Keigo, Watanabe;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.2-44
    • /
    • 2001
  • This paper presents a new concept for controlling of under actuated robot manipulators with avoiding obstacles using switching computed torque method (SCTM). One fundamental approach of this algorithm is to use the partly stable controllers (PSCs) in order to fulfill the ultimate control objective. Here, we use genetic algorithms (GA)in order to employ the optimum control action for a given time frame with the available set of elemental controllers, depending on which links/variables are controlled, i.e. the selection of optimum switching sequence of the control actions. The proposed approach models links of the robot using evolving ellipses and then introduces a penalty scheme for the objective function of GA when it detects collisions. An under actuated robot manipulator, which has three detrees-of-freedom is taken into consideration so as to illustrate the design procedure. Simulation results show the e.ectiveness of the proposed method.

  • PDF

Design of Controllers for the Stable Idle Speed in the Internal Combustion Engine

  • Lee, Young-Choon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.54-60
    • /
    • 2001
  • This paper deals with control design method having anticipation delay which is proposed for the discrete nonlinear engine where system dynamics is not accurate. Due to the induction-to-power delay in internal combustion(IC) engine having abrupt torque loss, underdamping and chattering in engine idle speed becomes a serious problem and it could make drivers uncomfortable. For this reason, Three types of the closed-loop controller are developed for the stable engine idle speed control. The inputs of the controllers are an engine idle speed and air conditioning signal. The output of the controllers is an duty cycle to operate the idle speed control valve(ISCV). The proposed controllers will be useful for improving actual vehicles since these shows good test

  • PDF

Extending Switching Frequency for Torque Ripple Reduction Utilizing a Constant Frequency Torque Controller in DTC of Induction Motors

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohd;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.148-155
    • /
    • 2011
  • Direct torque control(DTC) of induction machines is known to offer fast instantaneous torque and flux control with a simple control structure. However, this scheme has two major disadvantageous, namely, a variable inverter switching frequency and a high torque ripple. These problems occur due to the use of hysteresis comparators in conventional DTC schemes, particularly in controlling the output torque. This paper reviews the utilization of constant frequency torque controllers (CFTC) in DTC to solve these problems while retaining the simple control structure of DTC. Some extensions of the work in utilizing a CFTC will be carried out in this paper which can further reduce the torque ripple. This is particularly useful for a system which has a limited/low sampling frequency. The feasibility of a CFTC with an extended carrier frequency in minimizing the torque ripple is verified through experimental results.

A New Direct Torque Control Method of Induction Motor for Torque Ripple Reduction

  • Kim, Deok-Ki;Kim, Jong-Su;Kim, Sung-Hwan;Kim, Hyun-Soo;Kim, Won-Ouk;Yoon, Kyoung-Kuk;Oh, Sae-Gin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1061-1067
    • /
    • 2008
  • Direct Torque Control[DTC] and Vector Control are the two schemes developed for high performance induction motor drives. DTC based induction motors are being increasingly used in various industrial applications. DTC offers fast torque response and better speed control with lesser hardware and processing costs as compared to vector controlled drives. However, conventional DTC suffers from high torque ripple, current harmonics and low performance during torque transients. In this paper a new Direct Torque Control[DTC] method of induction motor is presented. In comparison with the conventional DTC method, the PWM technique is applied to proposed control method. In this method, decoupling mechanism is not required and the torque, the flux magnitude are under control using PI controllers and generating the voltage command for inverter control. Therefore torque and speed ripple could be reduced in comparison with the conventional switching table DTC.

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.

A Study on Simulation-based Optimization for Wind Turbine Controller Tuning (시뮬레이션 기반의 풍력발전제어시스템 최적화 기법에 관한 연구)

  • Jeon, Gyeong-Eon;No, Tae-Soo;Kim, Guk-Seon;Kim, Ji-Yon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.503-510
    • /
    • 2011
  • This paper presents a method of optimizing the blade pitch and generator torque controllers which have been already designed for an existing wind turbine generator system. Since the highly nonlinear and uncertain characteristics of the wind turbine generator can not be fully considered in the controller design phase, some parameters such as control gains must be tuned during the field implementation phase. In this paper, nonlinear simulation software, which is based high fidelity wind turbine model, and optimization technique are effectively combined and used to tune a set of gains for the blade pitch and the generator torque controllers. Simulation results show that the baseline controllers can be effectively optimized to reduce the errors in wind turbine rotor speed and generator power output controls as well as twisting of the high and low speed shafts.

Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically Redundant Manipulators

  • Park, Myoung-Hwan
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.56-61
    • /
    • 2000
  • Majority of industrial robots are controlled by a simple independent joint control of joint actuators rather than complex controllers based on the nonlinear dynamic model of the robot manipulator. In this independent joint control scheme, the performance of actuator control is influenced significantly by the joint disturbance torques including gravity, Coriolis and centrifugal torques, which result in the trajectory tracking error in the joint control system. The control performance of a redundant manipulator under independent joint control can be improved by minimizing this joint disturbance torque in resolving the kinematic redundancy. A 3 DOF planar robot is studied as an example, and the dynamic programming method is used to find the globally optimal joint trajectory that minimize the joint disturbance torque over the entire motion. The resulting solution is compared with the solution obtained by the conventional joint torque minimization, and it is shown that joint disturbance can be reduced using the kinematic redundancy.

  • PDF