• Title/Summary/Keyword: torque ripple reduction

Search Result 192, Processing Time 0.026 seconds

Torque Ripple Reduction Method in a Sensorless Drive for BLDC Motor (브러시리스 직류전동기용 센서리스 드라이브의 토크 맥동 저감 방법)

  • Lee, Kwang-Woon;Kim, Dae-Kyong;Kim, Tae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1087-1089
    • /
    • 2003
  • This paper presents a method to reduce commutation torque ripple in a sensorless brushless DC motor drive without current sensors. To compensate the commutation torque ripple completely, the duration of commutation must be known. The proposed method measures the duration of commutation from terminal voltage waveforms, calculates a PWM duty ratio to suppress the commutation torque ripple from the output of speed controller, and applies the calculated PWM duty ratio only during the commutation. Experimental results show that vibrations are considerably reduced when the proposed method is applied to the sensorless brushless DC moter drive for air-conditioner compressor.

  • PDF

Optimal Design of Ferromagnetic Pole Pieces for Transmission Torque Ripple Reduction in a Magnetic-Geared Machine

  • Kim, Sung-Jin;Park, Eui-Jong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1628-1633
    • /
    • 2016
  • This paper derives an effective shape of the ferromagnetic pole pieces (low-speed rotor) for the reduction of transmission torque ripple in a magnetic-geared machine based on a Box-Behnken design (BBD). In particular, using a non-linear finite element method (FEM) based on 2-D numerical analysis, we conduct a numerical investigation and analysis between independent variables (selected by the BBD) and reaction variables. In addition, we derive a regression equation for reaction variables according to the independent variables by using multiple regression analysis and analysis of variance (ANOVA). We assess the validity of the optimized design by comparing characteristics of the optimized model derived from a response surface analysis and an initial model.

Torque Ripple Reduction Drive of Single-Phase SRM with High Power Factor (단상 SRM의 토크리플 저감을 고려한 고역률 구동)

  • Kim B.C.;Park S.J.;Ahn J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.481-484
    • /
    • 2003
  • A strategy for a torque ripple reduction drive of single-phase SRM with high power factor is proposed. The drive for switched reluctance motor (SRM) is presented to achieve sinusoidal, near unity power factor input current with low torque ripple. The proposed SRM drive has no additional active switch. And a single-stage approach, which combines a DC link capacitor used as dc source and a drive used for driving the motor into one power stage, has a simple structure and low cost. The characteristics and validity of the proposed circuit is discussed in depth through the experimental results.

  • PDF

Torque Ripple Reduction Drive of Single-Phase SRM with High Power Factor (고역률 저토크 단상 SRM)

  • Kim Bong-Chul;Park Sung-Jun;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.959-962
    • /
    • 2004
  • A strategy for a torque ripple reduction drive of single-phase SRM with high power factor is proposed. The drive for switched reluctance motor (SRM) is presented to achieve sinusoidal, near unity power factor input current with low torque ripple. The proposed SRM drive has no additional active switch. And a single-stage approach, which combines a DC link capacitor used as do source and a drive used for driving the motor into one power stage, has a simple structure and low cost. The characteristics and validity of the proposed circuit is discussed in depth through the experimental results.

  • PDF

A Method of Torque Ripple Reduction using Commutation Time Control in BLDC Motor (전환시간 제어를 통한 BLDC전동기의 토크리플 저감 방법)

  • Her, Nam-Euk;Oh, Tae-Seok;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.342-344
    • /
    • 2006
  • This paper present a method of current control for torque ripple reduction in brushless dc motor which have a trapezoid back EMF. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. The ripples suppression techniques that are practically effective in high speed as well as in low speed regions are rarely found. The proposed method here is based on a strategy that the commutation intervals of the incoming ang the outgoing phases can be equalized by a proper PWM control.

  • PDF

Rotor Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 설계)

  • Park, Jung-Min;Lee, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.623-627
    • /
    • 2006
  • This paper deals with the optimum rotor design solution on torque ripple reduction for a SynRM with concentrated winding using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with finite element method (FEM)and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Comparisons are given with characteristics of a SynRM according to flux barrier number, flux barrier width variation, respectively.

Improved Analytical Modeling of a Ellipse Shape Permanent Magnet Rotor in Ultra-High-Speed Brushless DC motor for the Reduction of Torque Ripple

  • Sung, So-Young;Jeong, Jae-Hoon;Choi, Ji-Hwan;Park, Hyung-Il;Jang, Seok-Myeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.945-950
    • /
    • 2013
  • This paper deals with the ellipse permanent magnet machines for the minimization of torque ripple based on electromagnetic field theory. On the basis of a magnetic vector potential and a two dimensional (2-D) polar system, analytical solutions for flux density due to permanent magnet (PM) and current are obtained. In particular, the analytical solutions for mathematical expressions of magnets with different circumferential thicknesses can be solved introducing improved magnetization modeling techniques. The analytical results are validated extensively be nonlinear finite element solutions, a reduction of torque ripple can be achieved.

A Study on the Torque Ripple Reduction on Brushless DC Motor (브러시리스 직류 전동기의 토크리플 저감에 관한 연구)

  • Ryoo, Si-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.2
    • /
    • pp.7-14
    • /
    • 2005
  • This paper presents a method to reduce torque ripple of brushless DC motor by compensating phase delay due to winding inductance. For considering torque ripple comes from the phase winding inductance, torque equation of one phase is derived as Fourier series that is function of the delay. From the equation, also the resultant equation that the current delay is compensated is derived. It is validated that the compensated torque has a form of Fourier series for rectangular wave that is ideal torque, and torque ripple is reduced, consequently. Experimental method for the compensation is realized by replacing switching pattern of inverter by pattern of compensated rotor position. The effectiveness of the proposed method to reduce torque ripple has been demonstrated by the simulation and experimental results using 3 phase 4 pole brushless DC moor.

Characteristics of a 4-phase Segment Type Switched Reluctance Motor

  • Higuchi, Tsuyoshi;Yamaguchi, Daiki;Abe, Takashi;Yokoi, Yuichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.235-240
    • /
    • 2014
  • A novel segment type switched reluctance motor (SRM) as a rare-earth-less motor is proposed. The torque was increased by 40% and the radial force was decreased by 76% compared with the same size usual variable reluctance (VR) type SRM. Increasing the average torque, however, caused increasing torque ripple. In this paper we develop a 4-phase segment type SRM and show that the torque ripple can be decreased well.

A Commutation Torque Ripple Reduction for Brushless DC Motor Drives

  • Won, Chang-hee;Song, Joong-Ho;Ick Choy
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.174-182
    • /
    • 2002
  • This paper presents a comprehensive study on reducing commutation torque ripples generated in brushless DC motor drives with only a single do-link current sensor provided. In such drives, commutation torque ripple suppression techniques that are practically effective in low speed as well as high speed regions are scarcely found. The commutation compensation technique proposed here is based on a strategy that the current slopes of the incoming and the outgoing phases during the commutation interval can be equalized by a proper duty-ratio control. Being directly linked with deadbeat current control scheme, the proposed control method accomplishes suppression of the spikes and dips superimposed on the current and torque responses during the commutation intervals of the inverter. Effectiveness of the proposed control method is verified through simulations and experiments.