• Title/Summary/Keyword: tornado simulation

Search Result 25, Processing Time 0.027 seconds

Effects of aspect ratio on laboratory simulation of tornado-like vortices

  • Tang, Zhuo;Zuo, Delong;James, Darryl;Eguch, Yuzuru;Hattori, Yasuo
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.111-121
    • /
    • 2018
  • Experiments were conducted in a large-scale Ward-type tornado simulator to study tornado-like vortices. Both flow velocities and the pressures at the surface beneath the vortices were measured. An interpretation of these measurements enabled an assessment of the mean flow field as well as the mean and fluctuating characteristics of the surface pressure deficit, which is a manifestation of the flow fluctuation aloft. An emphasis was placed on the effect of the aspect ratio of the tornado simulator on the characteristics of the simulated flow and the corresponding surface pressure deficit, especially the evolution of these characteristics due to the transition of the flow from a single-celled vortex to a two-celled vortex with increasing swirl ratio.

A comparison of the forces on dome and prism for straight and tornadic wind using CFD model

  • Yousef, Majdi A.A.;Selvam, Panneer R.;Prakash, Jai
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.369-382
    • /
    • 2018
  • Tornadoes are vertical swirling air formed because of the existence of layers of air with contrasting features of temperature, wind flow, moisture, and density. Tornadoes induce completely different wind forces than a straight-line (SL) wind. A suitably designed building for an SL wind may fail when exposed to a tornado-wind of the same wind speed. It is necessary to design buildings that are more resistant to tornadoes. In tornado-damaged areas, dome buildings seem to have less damage. As a dome structure is naturally wind resistant, domes have been used in back yards, as single family homes, as in-law quarters, man caves, game rooms, storm shelters, etc. However, little attention has been paid to the tornadic wind interactions with dome buildings. In this work, the tornado forces on a dome are computed using Computational Fluid Dynamics (CFD) for tornadic and SL wind. Then, the interaction of a tornado with a dome and a prism building are compared and analyzed. This work describes the results of the tornado wind effect on dome and prism buildings. The conclusions drawn from this study are illustrated in visualizations. The tornado force coefficients on a dome building are larger than SL wind forces, about 120% more in x- and y-directions and 280% more in z-direction. The tornado maximum pressure coefficients are also higher than SL wind by 150%. The tornado force coefficients on the prism are larger than the forces on the dome, about 100% more in x- and y-directions, and about 180% more in z-direction. The tornado maximum pressure coefficients on prism also are greater those on dome by 150% more. Hence, a dome building has less tornadic load than a prism because of its aerodynamic shape.

Finite element modelling of transmission line structures under tornado wind loading

  • Hamada, A.;El Damatty, A.A.;Hangan, H.;Shehata, A.Y.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.451-469
    • /
    • 2010
  • The majority of weather-related failures of transmission line structures that have occurred in the past have been attributed to high intensity localized wind events, in the form of tornadoes and downbursts. A numerical scheme is developed in the current study to assess the performance of transmission lines under tornado wind load events. The tornado wind field is based on a model scale Computational Fluid Dynamic (CFD) analysis that was conducted and validated in a previous study. Using field measurements and code specifications, the CFD model data is used to estimate the wind fields for F4 and F2 full scale tornadoes. The wind forces associated with these tornado fields are evaluated and later incorporated into a nonlinear finite element three-dimensional model for the transmission line system, which includes a simulation for the towers and the conductors. A comparison is carried between the forces in the members resulting from the tornadoes, and those obtained using the conventional design wind loads. The study reveals the importance of considering tornadoes when designing transmission line structures.

Influence of turbulence modeling on CFD simulation results of tornado-structure interaction

  • Honerkamp, Ryan;Li, Zhi;Isaac, Kakkattukuzhy M.;Yan, Guirong
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.131-146
    • /
    • 2022
  • Tornadic wind flow is inherently turbulent. A turbulent wind flow is characterized by fluctuation of the velocity in the flow field with time, and it is a dynamic process that consists of eddy formation, eddy transportation, and eddy dissipation due to viscosity. Properly modeling turbulence significantly increases the accuracy of numerical simulations. The lack of a clear and detailed comparison between turbulence models used in tornadic wind flows and their effects on tornado induced pressure demonstrates a significant research gap. To bridge this research gap, in this study, two representative turbulence modeling approaches are applied in simulating real-world tornadoes to investigate how the selection of turbulence models affects the simulated tornadic wind flow and the induced pressure on structural surface. To be specific, LES with Smagorinsky-Lilly Subgrid and k-ω are chosen to simulate the 3D full-scale tornado and the tornado-structure interaction with a building present in the computational domain. To investigate the influence of turbulence modeling, comparisons are made of velocity field and pressure field of the simulated wind field and of the pressure distribution on building surface between the cases with different turbulence modeling.

Deriving vertical velocity in tornadic wind field from radar-measured data and improving tornado simulation by including vertical velocity at velocity inlet

  • Yi Zhao;Guirong Yan;Ruoqiang Feng;Zhongdong Duan;Houjun Kang
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.245-259
    • /
    • 2024
  • In a tornadic wind field, the vertical velocity component in certain regions of tornadoes can be significant, forming one of the major differences between tornadic wind fields and synoptic straight-line wind fields. To better understand the wind characteristics of tornadoes and properly estimate the action of tornadoes on civil structures, it is important to ensure that all the attributes of tornadoes are captured. Although Doppler radars have been used to measure tornadic wind fields, they can only directly provide information on quasi-horizontal velocity. Therefore, lots of numerical simulations and experimental tests in previous research ignored the vertical velocity at the boundary. However, the influence of vertical velocity in tornadic wind fields is not evaluated. To address this research gap, this study is to use an approach to derive the vertical velocity component based on the horizontal velocities extracted from the radar-measured data by mass continuity. This approach will be illustrated by using the radar-measured data of Spencer Tornado as an example. The vertical velocity component is included in the initial inflow condition in the CFD simulation to assess the influence of including vertical velocity in the initial inflow condition on the entire tornadic wind field.

Topographic effects on tornado-like vortex

  • Nasir, Zoheb;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.123-136
    • /
    • 2018
  • The effects of steep and shallow hills on a stationary tornado-like vortex with a swirl ratio of 0.4 are simulated and quantified as Fractional Speed Up Ratios (FSUR) at three different locations of the vortex with respect to the crests of the hills. Steady state Reynolds Averaged Naiver Stokes (RANS) equations closed using Reynolds Stress Turbulence model are used to simulate stationary tornadoes. The tornado wind field obtained from the numerical simulations is first validated with previous experimental and numerical studies by comparing radial and tangential velocities, and ground static pressure. A modified fractional speed-up ratio (FSUR) evaluation technique, appropriate to the complexity of the tornadic flow, is then developed. The effects of the hill on the radial, tangential and vertical flow components are assessed. It is observed that the effect of the hill on the radial and vertical component of the flow is more pronounced, compared to the tangential component. Besides, the presence of the hill is also seen to relocate the center of tornadic flow. New FSUR values are produced for shallow and steep hills.

A study for horizontal control of the Tornado using PWM method (PWM을 이용한 토네이도의 수평제어)

  • 김진호;배형섭;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1713-1716
    • /
    • 2003
  • Casing Oscillator is a construction machine that used to insert casings which is based on construction of a building or bridge into the ground. The purpose of using casing supports a pile or in case when heavy loads and moments happens. It is very important that the casings are retaining perpendicular to sea level regardless of the slope of the ground. So it requires that Casing Oscillator keep horizontality. But, it was useless a horizontal control without another heavy equipment. Tornado is a type of Casing Oscillator to advance. It controls horizontality with 4 cylinders. Those cylinders controlled by high-speed solenoid valves. This paper represents horizontal control of the Tornado using Kinematics. First. the horizontal control simulated by AMESim, which is simulation tool. then it compared with experimental results.

  • PDF

Evaluation of horizontal-axis-three-blade wind turbines' behavior under different tornado wind fields

  • Mohamed AbuGazia;Ashraf El Damatty;Kaoshan Dai;Wensheng Lu;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.413-423
    • /
    • 2023
  • Wind turbines are usually steel hollow structures that can be vulnerable to dramatic failures due to high-intensity wind (HIW) events, which are classified as a category of localized windstorms that includes tornadoes and downbursts. Analyzing Wind Turbines (WT) under tornadoes is a challenging-to-achieve task because tornadoes are much more complicated wind fields compared with the synoptic boundary layer wind fields, considering that the tornado's 3-D velocity components vary largely in space. As a result, the supporting tower of the wind turbine and the blades will experience different velocities depending on the location of the event. Wind farms also extend over a large area so that the probability of a localized windstorm event impacting one or more towers is relatively high. Therefore, the built-in-house numerical code "HIW-WT" has been developed to predict the straining actions on the blades considering the variability of the tornado's location and the blades' pitch angle. The developed HIWWT numerical model incorporates different wind fields that were generated from developed CFD models. The developed numerical model was applied on an actual wind turbine under three different tornadoes that have different tornadic structure. It is found that F2 tornado wind fields present significant hazard for the wind turbine blades and have to be taken into account if the hazardous impact of this type of unexpected load is to be avoided.

Sensitivity Analysis of Steel Frames Subjected to Progressive Collapse (철골구조물의 연쇄붕괴에 대한 민감도 해석)

  • Park, Jun-Hei;Hong, Su-Min;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.307-312
    • /
    • 2008
  • Local damage may cause sequential collapse of structure, which is called progressive collapse. Current progressive collapse analysis is based on the mean value of design variables. This deterministic approach has a low reliability as it doesn't consider uncertainty of variables. In this study the sensitivity of design variables for progressive collapse of structure is evaluated by Monte Calro simulation and Tornado diagram. The analysis results show that the behaviour of model structures is highly sensitive to variation of the yield force of beams and the structural damping ratio.

  • PDF

Sensitivity Analysis of Steel Frames Subjected to Progressive Collapse (철골조의 연쇄붕괴 민감도 해석)

  • Park, Jun-Hei;Kim, Jin-Koo;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.211-216
    • /
    • 2008
  • Recently a lot of researches have been conducted on the progressive collapse of structures which is the total collapse of structures initiated by localized damage. Most of the previous studies on the field of progressive collapse have followed deterministic approach without considering uncertainty involved in design variables, which results in unknown reliability of the analysis results. In this study the sensitivity analyses are carried out with design variables such as yield strength, live load, damping ratio, and elastic modulus on the vertical deflection of the joint from which a column is suddenly removed. The Monte Calro simulation, tornado diagram method, and the first order second moment method(FOSM) are applied for the sensitivity study. According to the nonlinear static analysis results, the vertical deflection is most affected by the variation of yield strength of beams. The nonlinear dynamic analyses show that the behaviour of model structures is highly sensitive to variation of the yield strength of beams and the structural damping ratio.