• Title/Summary/Keyword: topological information

Search Result 404, Processing Time 0.028 seconds

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

A Robust Object Detection and Tracking Method using RGB-D Model (RGB-D 모델을 이용한 강건한 객체 탐지 및 추적 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.61-67
    • /
    • 2017
  • Recently, CCTV has been combined with areas such as big data, artificial intelligence, and image analysis to detect various abnormal behaviors and to detect and analyze the overall situation of objects such as people. Image analysis research for this intelligent video surveillance function is progressing actively. However, CCTV images using 2D information generally have limitations such as object misrecognition due to lack of topological information. This problem can be solved by adding the depth information of the object created by using two cameras to the image. In this paper, we perform background modeling using Mixture of Gaussian technique and detect whether there are moving objects by segmenting the foreground from the modeled background. In order to perform the depth information-based segmentation using the RGB information-based segmentation results, stereo-based depth maps are generated using two cameras. Next, the RGB-based segmented region is set as a domain for extracting depth information, and depth-based segmentation is performed within the domain. In order to detect the center point of a robustly segmented object and to track the direction, the movement of the object is tracked by applying the CAMShift technique, which is the most basic object tracking method. From the experiments, we prove the efficiency of the proposed object detection and tracking method using the RGB-D model.

Geocoding Scheme for Multimedia in Indoor Space Based on IndoorGML (IndoorGML을 활용한 실내공간 멀티미디어 위치 인코딩 방법)

  • Li, Ki Joune
    • Spatial Information Research
    • /
    • v.21 no.4
    • /
    • pp.35-45
    • /
    • 2013
  • Most multimedia contains location information whether they are implicit or explicitly, and which are very useful for several purposes. In particular, we may use location information in defining query conditions to retrieve relevant multimedia. For this reason, a number of works have been done to organize and retrieve geo-referenced multimedia data. However, they mostly focus on outdoor space where position is identified by (x, y, z) coordinates. In this paper, we focus on multimedia in an alternative space, indoor space, which differs from outdoor space in several aspects. First indoor space is considered as symbolic space, where location is identified by a symbolic code such as room number rather than coordinates. Second, topological information is a crucial element in providing indoor spatial information services. Third, indoor space is in more micro-scale than outdoor space, which influences on determining the visibility of cameras. Based on these different characteristics of indoor space, we survey the requirements of management systems of indoor geo-referenced multimedia. Then we propose a geo-coding scheme for multimedia in indoor space as an extension of IndoorGML, an OGC(Open Geospatial Consortium) candidate standard for indoor spatial information. We also present a prototype system called, IngC (INdoor Geo-Coding) developed to store and manage indoor geo-referenced multimedia.

Virtual Cluster-based Routing Protocol for Mobile Ad-Hoc Networks (이동 Ad-hoc 네트워크를 위한 가상 클러스터 방식의 경로 설정 프로토콜)

  • 안창욱;강충구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.544-561
    • /
    • 2002
  • In this paper, we propose a new hybrid type of the routing protocol (Virtual Cluster-based Routing Protocol: VCRP) for mobile ad-hoc networks, based on a virtual cluster, which is defined as a narrow-sense network to exchange the basic information related to the routing among the adjacent nodes. This particular approach combines advantage of proactive routing protocol (PRP), which immediately provides the route collecting the network-wide topological and metric information, with that of reactive routing protocol, which relies on the route query packet to collect the route information on its way to the destination without exchanging any information between nodes. Furthermore, it also provides the back-up route as a byproduct, along with the optimal route, which leads to the VCBRP (Virtual Cluster-based Routing Protocol with Backup Route) establishing the alternative route immediately after a network topology is changed due to degradation of link quality and terminal mobility, Our simulation studies have shown that the proposed routing protocols are robust against dynamics of network topology while improving the performances of packet transfer delay, link failure ratio, and throughput over those of the existing routing protocols without much compromising the control overhead efficiency.

An Approximate Shortest Path Re-Computation Method for Digital Road Map Databases in Mobile Computing Environments (모바일 컴퓨팅 환경에서의 디지털 로드맵 데이타베이스를 위한 근접 최단 경로 재계산 방법)

  • 김재훈;정성원;박성용
    • Journal of KIISE:Databases
    • /
    • v.30 no.3
    • /
    • pp.296-309
    • /
    • 2003
  • One of commercial applications of mobile computing is ATIS(Advanced Traveler Information Systems) in ITS(Intelligent Transport Systems). In ATIS, a primary mobile computing task is to compute the shortest path from the current location to the destination. In this paper, we have studied the shortest path re-computation problem that arises in the DRGS(Dynamic Route Guidance System) in ATIS where the cost of topological digital road map is frequently updated as traffic condition changes dynamically. Previously suggested methods either re-compute the shortest path from scratch or re-compute the shortest path just between the two end nodes of the edge where the cost change occurs. However, these methods we trivial in that they do not intelligently utilize the previously computed shortest path information. In this paper, we propose an efficient approximate shortest path re-computation method based on the dynamic window scheme. The proposed method re-computes an approximate shortest path very quickly by utilizing the previously computed shortest path information. We first show the theoretical analysis of our methods and then present an in-depth experimental performance analysis by implementing it on grid graphs as well as a real digital road map.

A Linkage between IndoorGML and CityGML using External Reference (외부참조를 통한 IndoorGML과 CityGML의 결합)

  • Kim, Joon-Seok;Yoo, Sung-Jae;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.65-73
    • /
    • 2014
  • Recently indoor navigation with indoor map such as Indoor Google Maps is served. For the services, constructing indoor data are required. CityGML and IFC are widely used as standards for representing indoor data. The data models contains spatial information for the indoor visualization and analysis, but indoor navigation requires semantic and topological information like graph as well as geometry. For this reason, IndoorGML, which is a GML3 application schema and data model for representation, storage and exchange of indoor geoinformation, is under standardization of OGC. IndoorGML can directly describe geometric property and refer elements in external documents. Because a lot of data in CityGML or IFC have been constructed, a huge amount of construction time and cost for IndoorGML data will be reduced if CityGML can help generate data in IndoorGML. Thus, this paper suggest practical use of CityGML including deriving from and link to CityGML. We analyze relationships between IndoorGML and CityGML. In this paper, issues and solutions for linkage of IndoorGML and CityGML are addressed.

Analysis of GIUH Model using River Branching Characteristic Factors (하천분기 특성인자를 고려한 지형학적 순간단위도 모형의 해석)

  • Ahn, Seung-Seop;Kim, Dae-Hyeung;Heo, Chang-Hwan;Park, Jong-Kwon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.4
    • /
    • pp.9-23
    • /
    • 2002
  • The purpose of this research was to develop a model that minimizes time and money for deriving topographical property factors and hydro-meteorological property factors, which are used in interpreting flood flow, and that makes it possible to forecast rainfall-runoff using a least number of factors. That is, the research aimed at suggesting a runoff interpretation method that considers the river branching characteristics but not the topographical and geological properties and the land cover conditions, which had been referred in general. The subject basin of the research was the basin of Yeongcheon Dam located in the upper reaches of the Kumho River. The parameters of the model were derived from the results of abstracting topological properties out of rainfall-runoff observation data about heavy rains and Digital Elevation Modeling(DEM). According to the result of examining calculated peak runoff, the Clark Model and the GIUH Model showed relative errors of 1.9~23.9% and 0.8~11.3%, respectively and as a whole, the peak values of hydrograph appeared high. In addition, according to the result of examining the time when peak runoff took place, the relative errors of the Clark Model and the GIUH Model were 0.5~1 and 0~1 hour respectively, and as a whole, peak flood time calculated by the GIUH Model appeared later than that calculated by the traditional Clark Model.

  • PDF

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

An Empirical Study on Quantitative Evaluation of Cognitive Function (인지기능의 정량적 평가를 위한 측정 모델 소프트웨어 개발 및 실험적 검증 연구)

  • Ryu, Wan-Seok;Kim, Hyung-Gun;Chung, Sung-Taek
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2010
  • Imaging studies using MRI, PET, and/or MEG have been primary evaluation methods to quantitatively assess cognitive function. Recent advances in computational technology and information technology may allow a novel evaluation methodology to quantitate cognitive function more cost-effectively. In this study, we developed a software package composed of a series of tests to evaluate cognitive ability combined with a user-friendly touch screen input device. This cognitive assessment tool can quantitate concentration, numeric memory, associative memory, topological memory, visual and muscular reaction, and acoustic reaction over a relatively short testing time. We performed an empirical study on eighty normal subjects aged 20 and 59 years old using the developed evaluation methods. Age-related cognitive deterioration after 40 years old was confirmed. There was no difference in cognitive ability between male and female in the same age group. This study demonstrates the feasibility of a simple but effective evaluation software tool to quantitatively assess cognitive ability. This methodology may provide improved accessibility and reduced costs to perform cognitive function studies to compare between various subject groups.

Sequential Approximate Optimization by Dual Method Based on Two-Point Diagonal Quadratic Approximation (이점 대각 이차 근사화 기법을 쌍대기법에 적용한 순차적 근사 최적설계)

  • Park, Seon-Ho;Jung, Sang-Jin;Jeong, Seung-Hyun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.259-266
    • /
    • 2011
  • We present a new dual sequential approximate optimization (SAO) algorithm called SD-TDQAO (sequential dual two-point diagonal quadratic approximate optimization). This algorithm solves engineering optimization problems with a nonlinear objective and nonlinear inequality constraints. The two-point diagonal quadratic approximation (TDQA) was originally non-convex and inseparable quadratic approximation in the primal design variable space. To use the dual method, SD-TDQAO uses diagonal quadratic explicit separable approximation; this can easily ensure convexity and separability. An important feature is that the second-derivative terms of the quadratic approximation are approximated by TDQA, which uses only information on the function and the derivative values at two consecutive iteration points. The algorithm will be illustrated using mathematical and topological test problems, and its performance will be compared with that of the MMA algorithm.