• Title/Summary/Keyword: topical drug

Search Result 116, Processing Time 0.024 seconds

Phonophoretic Delivery of Piroxicam (초음파를 이용한 피록시캄의 경피흡수)

  • Chung, Kyu-Ho;Kim, Young-Il;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.259-265
    • /
    • 2002
  • Piroxicam is one of the NSAID, which is used in the systemic and topical treatment of a variety of inflammatory conditions. Conventionally, for topical use, the drug is formulated in gel. We designed an phonophoretic drug delivery system to investigate the piroxicam permeability and the influence of ultrasound application (continuous mode, pulsed mode), frequency (1.0 MHz, 3.0 MHz) and intensity $(1.0\;w/cm^2,\;1.5\;w/cm^2,\;2.0\;w/cm^2)$ with 0.5% piroxicam gel. Per cutaneous absorption studies were performed in vitro models to determine the rate of drug absorption via the skin. Permeation study using hairless mouse skin was performed at $37^{\circ}C$ using buffered saline (pH 7.4, 10% propylene glycol solution) as the receptor solution. Anti-inflammatory activity was determined using carrageenan-induced foot edema model in rat. A pronounced effect of ultrasound on the skin absorption of the piroxicam was observed at all ultrasound energy level studied. Ultrasound was carried out for 10 hr. The highest permeation was observed at intensity of $2.0\;w/cm^2$, frequency of 1.0 MHz and continuous output. The inclusion of phonophoresis was found to improve significantly the skin permeation in vitro and the anti-inflammatory activity in vivo.

Inhibitory Effect of Shimotsu-to, a Traditional Chinese Herbal Prescription, on Acute Inflammation in Rats and Guinea Pigs

  • Sakuma, Katsuya;Izumi-Kaji;Masahiko-Ogihara;Katsumi-Yamamoto
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.122-125
    • /
    • 1996
  • We examined the effect of topical application of Shimotsu-to, a traditional Chinese herbal prescription, on carrageenin-induced edema in rats and ultraviolet radiation-induced erythema in guinea pigs. Shimotsu-to (5% in water) markedly suppressed an acute edema of rat hindpaw induced by 1% carrageenin, and was more effective than any other single crude drug componcent of Shimotsu-to, Topical treatment with this prescription also inhibited ultraviolet erythema on the back skin of guinea pigs (a human sunbrun model). These results suggest the therapeutic effect on acute inflammation by topical application of Shimotsu-to.

  • PDF

Drug Release Characteristics and Skin Irritancies of Topical Gels and Multiple Emulsion Creams Containing Kojic Acid (외용겔 및 다중유제크림의 코지산 방출특성과 피부자극성)

  • Yu, Sung-Un;Park, Eun-Woo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.2
    • /
    • pp.87-92
    • /
    • 1998
  • Kojic acid (KA) is an antimelanogenic agent which has been widely used in cosmetics to whiten the skin color. However, it has the drawbacks of the skin irritancy and the instability against the pH, temperature, and light. In order to overcome these problems, various topical gels and multiple emulsion creams which can control the release of active ingredient, KA, were formulated employing cream bases of mineral oil with caprylic capric triglyceride and hydrophilic polymers such as chitosan, carbopol. and pluronics. Using Franz diffusion cells mounted with a synthetic cellulose membrane (MWCO 12,000), drug release characteristics of the formulations were evaluated by the HPLC assay of KA concentration in the receptor compartment of pH 7.4 phosphate buffered saline solution. Drug release from chitosan-based gels (ChitoGel) obeyed to the first order kinetics with a rapid release especially in the initial period. However, pluronic-based gels (PluGel) and carbopol-based gels (CarboGel) revealed controlled release of drug to some extent, followed by the square root-time kinetics. Moreover, the release of KA was further controlled with the W/O/W multiple emulsion creams (MultiCream), showing the apparent zero order release kinetics by virtue of dynamic ratecontrolling membrane of the oil layer. The flux $(J,\;{\mu}g/cm^2/hr)$ of ChitoGel. CarboGel. PluGel. and MultiCream in the initial period of 6hr were 73.30, 28.67. 24.04 and 7.72, respectively. On the other hand, the skin irritancy score of ChitoGel and MultiCream were observed as 2.5 and 2.3 respectively, in the rabbit skin irritation test. Although there were insignificant differences at p<0.05 between those formulations, it was possible to conclude that the W/O/W multiple emulsion creams containing KA might be a good candidate for an antimelanogenic drug delivery system due to the controlled release of acidic drug molecules.

  • PDF

Microemulsion-based Hydrogel Formulation of Itraconazole for Topical Delivery

  • Lee, Eun-A;Balakrishnan, Prabagar;Song, Chung-Kil;Choi, Joon-Ho;Noh, Ga-Ya;Park, Chun-Geon;Choi, Ae-Jin;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.305-311
    • /
    • 2010
  • The present study was aimed at preparing microemulsion-based hydrogel (MBH) for the skin delivery of itraconazole. Microemulsion prepared with Transcutol as a surfactant, benzyl alcohol as an oil and the mixture of ethanol and phasphatidyl choline (3:2) as a cosurfactant were characterized by solubility, phase diagram, particle size. MBHs were prepared using 0.7 % of xanthan gum (F1-1) or carbopol 940 (F1-2) as gelling agents and characterized by viscosity studies. The in vitro permeation data obtained by using the Franz diffusion cells and hairless mouse skin showed that the optimized microemulsion (F1) consisting of itraconazole (1% w/w), benzyl alcohol (10% w/w), Transcutol (10% w/w) and the mixture of ethanol and phospahtidylcholine (3:2) (10% w/w) and water (49% w/w) showed significant difference in the flux (${\sim}1{\mu}g/cm^2/h$) with their corresponding MBHs (0.25-0.64 ${\mu}g/cm^2/h$). However, the in vitro skin drug content showed no significant difference between F1 and F1-1, while F1-2 showed significantly low skin drug content. The effect of the amount of drug loading (0.02, 1 and 1.5% w/w) on the optimized MBH (F1-2) showed that the permeation and skin drug content increased with higher drug loading (1.5%). The in vivo study of the optimized MBH (F1-2 with1.5% w/w drug loading) showed that this formulation could be used as a potential topical formulation for itraconazole.

Photoprotective Effect of Topical EGb 761 and Korean Red Ginseng in C57BL/6 Mice

  • Choi, Wook-Hee;Han, Seon-Kyu;Yi, Seh-Yoon;Ann, Hyoung-Soo;Ahn, Ryoung-Me
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.306-310
    • /
    • 2005
  • Exposure to UVB radiation can cause diverse biological photodamage to skin. Eeb 761 and Korean red ginseng are the major and most effective natural drug against a variety of oxidative damage. But, the protective effects against UVB radiation have not been clearly identified. In this study, we investigated the protective effect of topical EGb 761 and Korean red ginseng on pigmentation by UVB radiation. Pro-inflammatory cytokines($IL-l{\beta}$, IL-6 and $TNF-{\alpha}$) and melanogenesis proteins(tyrosinase, TRP-1 and TRP-2) mRNA were measured by reverse transcription-polymerase chain reaction(RT-PCR) analysis. The in vivo protection against pigmentation was calculated using chromameter. The mRNA level of IL-lf and TNF-a were increased by UVB irradiation in treated and non-treated group, while no significant changes were observed in IL-6 level. Topical treatment with EGb 761 and Korean red ginseng remarkably reduced expression of tyrosinase, TRP-1 and TRP-2 in the non-irradiated and irradiated skin. Application of EGb 761 and Korean red ginseng significantly protected the WB-induced skin pigmentation and Korean red ginseng was more effective. Our study suggests that topical ECb761 and Korean red ginseng can regulate melanogenic proteins and protect UVB radiation on skin pigmentation.

  • PDF

The efficiency of topical anesthetics as antimicrobial agents: A review of use in dentistry

  • Kaewjiaranai, Thanawat;Srisatjaluk, Ratchapin Laovanitch;Sakdajeyont, Watus;Pairuchvej, Verasak;Wongsirichat, Natthamet
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.4
    • /
    • pp.223-233
    • /
    • 2018
  • Topical anesthetics are commonly used in oral & maxillofacial surgery to control pain in the oral cavity mucosa before local anesthetic injection. These anesthetic agents come in many forms, developed for different usages, to minimize adverse reactions, and for optimal anesthetic efficiency. Earlier studies have revealed that these agents may also limit the growth of microorganisms in the area of anesthetic application. Many topical anesthetic agents show different levels of antimicrobial activity against various bacterial strains and Candida. The dosage of local anesthetic agent used in some clinical preparations is too low to show a significant effect on microbial activity. Efficiency of antimicrobial activity depends on the local anesthetic agent's properties of diffusion within the bloodstream and binding efficiency with cytoplasmic membrane, which is followed by disruption of the bacterial cell membrane. The antimicrobial properties of these agents may extend their usage in patients to both control pain and infection. To develop the topical local anesthetic optimal usage and antimicrobial effect, a collaborating antiseptic agent may be used to benefit the local anesthetic. However, more research is required regarding minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of topical local anesthetic agents with drug interaction between anesthetics and antiseptic agents.

Retardation of Drug Transport through Pig Ear Skin by Liposome-Hydrogel

  • Bae, Soo-Kyoung;Kim, Jin-Chul;Kim, Jong-Duk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.21-21
    • /
    • 1997
  • Transport of drug entrapped in a liposome-hydrogel formulation was significantly retarded in an in vitro topical application. Liposomes containing hydrocortisone acetate, a hydrophobic antiinflammatory agent, were prepared by the precipitation method, and the liposomal suspension was mixed with hydrogel into a semisolid gel-type ointment.(omitted)

  • PDF

Thermo-sensitive lipid nanoparticles as a novel topical delivery system of retinol

  • Jee, Jun-Pil;Lee, Mi-Kyung;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.425.2-425.2
    • /
    • 2002
  • The purpose of this study was to prepare thermo-sensitive solid-lipid nanoparticles (SLNs) with a lipid melted at human body temperature and to evaluate physicochemical properties of SLNs containing retinol. anti-wrinkle agent. as a model drug. SLNs were prepared using a high pressure homogenizing method. The SLNs were composed of retinol as a model drug. thermo-sensitive lipid (DS-CBS) as a lipid core. and egg phosphatidylcholine and Tween 80 as surfactants. Manufacturing variables such as homogenization pressure. (omitted)

  • PDF

Dermal Absorption and Body Distribution of $^{125}I-rhEGF$ in Hairless Mice (헤어리스마우스 피부 국소에 적용된 $^{125}I-rhEGF$의 피부흡수 및 체내 분포)

  • Lee, Jeong-Uk;Chung, Seok-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.737-748
    • /
    • 1997
  • Distribution of rhEGF in the skin, plasma and several organ tissues following topical application of $^{125}I-rhEGF$ (0.4${\mu}$Ci) solution in 25% Pluronic F-127 on 154$mm^2$ normal and damaged (burned and stripped) skins of hairless mice was examined. The radioactivity in the stripped skin tissues increased as a function of time, and was 10-20 times higher than that in the normal and burned skins. The fractions of intact drug in the skin tissues were 40-60% for the normal and burned skins, and 60-80% for the stripped skin. It indicates that the stratum corneum layer behaves as a barrier for the dermal penetration of the drug. The radioactivity in the plasma was much higher for the stripped skin than for the normal and burned skins. However, the concentration of intact drug in the stripped skin was comparable to those in the normal and burned skins indicating most severe degradation (or metabolism) of the drug in the stripped skin. As a result, the fraction of intact drug in the plasma was lowest for the stripped skin (<10%). Body organ distribution of the drug was much higher for the stripped skin. The concentration in the stomach. Both in total radioactivity and intact drug, showed more than 10-times higher value than in the other organs (liver, kidney and spleen). The fraction of intact drug in each organ tissue was below 10-20%. And generally lowest for the stripped skin. The lowest fraction of the drug for the stripped skin could not be explained by the activity of the aminopeptidases in the skin since it was lower for the stripped skin than for the normal skin. Thereover, the fraction of intact drug appears to be determined by the balance between dermal uptake and systemic elimination of the drug, for example. The mechanism of dermal uptake of rhEGF was examined by topical applying 200${\mu}$l of 25% Pluronic F-127 solution containing 0.4 ${\mu}$Ci of $^{125}I-rhEGF$ and 0.14${\mu}$Ci of $^{14}C$-inulin (a marker of passive diffusion). The radioactivity of $^{125}I-rhEGF$ at each sampling time point (0.5, 1, 2, 4 and 8hr) was correlated (p<0.05) with the corresponding radioactivity of $^{14}C$-inulin. It appears to indicate the rhEGF may be uptaken into the skins mainly by the passive diffusion. This hypothesis was supported by the constant specific binding of EGF to the skin homogenates regardless of the skin models. Receptor mediated endocytosis (RME) appears to contribute negligibly, if any, to the overall uptake process.

  • PDF