• Title/Summary/Keyword: topdressing rate

Search Result 25, Processing Time 0.026 seconds

Optimum N Topdressing for Tillering in Ridge Direct Seeding on Dry Paddy of Rice as an Irrigation Water-Saving Cultural System (벼 휴립건답직파 절수재배에 알맞은 질소 분얼비 시비량)

  • 최원영;김상수;송동석;최선영
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.75-80
    • /
    • 2001
  • This study was conducted to identify the optimum proper nitrogen (N) application rate for tillering in ridge direct seeding on dry paddy of rice culture. During 1998, a series of experiments was carried out at paddy field (Chonbuk series) of the National Honam Agricultural Experiment Station, RDA using Dongjinbyeo. Leaf area index and top dry weight increased with higher N levels, especially in the 100 kg/ha seeding rate compared with the 60 kg/ha seeding rate. N use efficiency increased at increased by 50~75% of the N topdressing rate at tillering. Heading date, ripened grain rate, and 1,000-grain weight of brown rice did not vary among the rate of topdressing for tillering and seeding rates. The highest grain number per unit area was at the level of increased by 75% in N topdressing at tillering stage. Milled rice yield increased 5% at the 60 kg/ha seeding rate and increased 16~17% at the 100 kg/ha seeding rate at increased by 50~75% of topdressing N compared with 48 kg/ha topdressed N of 60 kg/ha seeding rate.

  • PDF

Using Chlorophyll(SPAD) Meter Reading and Shoot Fresh Weight for Recommending Nitrogen Topdressing Rate at Panicle Initiation Stage of Rice

  • Nguyen, Hung The;Nguyen, Lan The;Yan, Yong-Feng;Lee, Kyu-Jong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Nitrogen management at the panicle initiation stage(PI) should be fine-tuned for securing a concurrent high yield and high quality rice production. For calibration and testing of the recommendation models of N topdressing rates at PI for target grain yield and protein content of rice, three split-split-plot design experiments including five rice cultivars and various N rates were conducted at the experimental farm of Seoul National University, Korea from 2003 to 2005. Data from the first two years of experiments were used to calibrate models to predict grain yield and milled-rice protein content using shoot fresh weight(FW), chlorophyll meter value(SPAD), and the N topdressing rate(Npi) at PI by stepwise multiple regression. The calibrated models explained 85 and 87% of the variation in grain yield and protein content, respectively. The calibrated models were used to recommend Npi for the target protein content of 6.8%, with FW and SPAD measured for each plot in 2005. The recommended N rate treatment was characterized by an average protein content of 6.74%(similar to the target protein content), reduced the coefficient of variation in protein content to 2.5%(compared to 4.6% of the fixed rate treatment), and increased grain yield. In the recommended N rate treatments for the target protein content of 6.8%, grain yield was highly dependent on FW and SPAD at PI. In conclusion, the models for N topdressing rate recommendation at PI were successful under present experimental conditions. However, additional testing under more variable environmental conditions should be performed before universal application of such models.

  • PDF

Development and Preliminary Test of a Prototype Program to Recommend Nitrogen Topdressing Rate Using Color Digital Camera Image Analysis at Panicle Initiation Stage of Rice (디지털 카메라 칼라영상 분석을 이용한 벼 질소 수비량 추천 원시 프로그램의 개발과 예비 적용성 검토)

  • Chi, Jeong-Hyun;Lee, Jae-Hong;Choi, Byoung-Rourl;Han, Sang-Wook;Kim, Soon-Jae;Park, Kyeong-Yeol;Lee, Kyu-Jong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • This study was carried out to develop and test a prototype program that recommends the nitrogen topdressing rate using the color digital camera image taken from rice field at panicle initiation stage (PIS). This program comprises four models to estimate shoot N content (PNup) by color digital image analysis, shoot N accumulation from PIS to maturity (PHNup), yield, and protein content of rice. The models were formulated using data set from N rate experiments in 2008. PNup was found to be estimated by non-linear regression model using canopy cover and normalized green values calculated from color digital image analysis as predictor variables. PHNup could be predicted by quadratic regression model from PNup and N fertilization rate at panicle initiation stage with $R^2$ of 0.923. Yield and protein content of rice could also be predicted by quadratic regression models using PNup and PHNup as predictor variables with $R^2$ of 0.859 and 0.804, respectively. The performance of the program integrating the above models to recommend N topdressing rate at PIS was field-tested in 2009. N topdressing rate prescribed for the target protein content of 6.0% by the program were lower by about 30% compared to the fixed rate of 30% that is recommended conventionally as the split application rate of N fertilizer at PIS, while rice yield in the plots top-dressed with the prescribed N rate were not different from those of the plots top-dressed with the fixed N rates of 30% and showed a little lower or similar protein content of rice as well. And coefficients of variation in rice yield and quality parameters were reduced substantially by the prescribed N topdressing. These results indicate that the N rate recommendation using the analysis of color digital camera image is promising to be applied for precise management of N fertilization. However, for the universal and practical application the component models of the program are needed to be improved so as to be applicable to the diverse edaphic and climatic condition.

Effects of Rubber Chips from Used Tires on Spots Turf Ground as Soil Conditioner (Rubber chip의 경기장 지반 물리성 개선과 잔디 생육에 미치는 효과)

  • ;;;David Minner
    • Asian Journal of Turfgrass Science
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • This study was conducted to investigated the effects of rubber chips from used tires on sports turf ground as soil conditioner to improve soil physical properties. The release of heavy metal ions was detected to check the soil contamination by incorporation of recycled rubber chips with topsoil. The effects of the chips were also evaluated as topdressing material to improve surface resilience. The rate of rubber chips showed a positive relationship with soil temperature increasement. Incorporation of rubber chips increased soil temperature on surface at 2.5 cm-depth. The rates of rubber chip showed a negative relationship with ground cover rate of turfgrass in early growth season. However, after 20 weeks, treatment of 10% rubber chips at 2.5 cm-depth showed a prominent cover rate of 70% which was not significantly different with untreated control. Incorporation of rubber chips within topsoil seemed to reduce soil compaction, but the effects was not prominent on physical properties. Rubber chips did not affect chemical properties and heavy metal contamination to soil environment. Rubber chips improved resilience of the compacted ground surface as topdressing material, this effect was prominent when aerification practise was preceded.

Effect of Crumb Rubber on the Wear Tolerance of Korean Lawngrass (폐타이어 칩이 한국들잔디의 내답압성에 미치는 영향)

  • Lee, Chung-Hwan;Kim, Ki-Sun
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.1
    • /
    • pp.19-33
    • /
    • 2003
  • The objective of this study was to evaluate the effects of crumb rubber recycled from used tires as a soil incorporation and topdressing materials on a trafficked Korean lawngrass‘Zenith’(Zoysia japonica). In Exp 1, incorporation treatments included three particle sizes (PS: coarse =4∼6.35 mm, medium =2∼4 mm, and One : less than 2 mm in diameter) and two incorporation rate (IR: 10 and 20%). Wear treatments were applied 30 passes per day by compactor weights being 60 kg with soccer shoes. Topdressing treatments included three PS and two topdressing depth (TD: 5 and 10 mm). Wear treatments were the same as described in Exp 1. In Exp 1, the treatment with medium PS+IR 20 resulted in the tendency to have high total clipping yield. There was no significant difference in clipping yield, turfgrass visual color, coverage, and root length among the treatments. Compared to control, tissue Zn levels increased about 6.5-fold by the treatments. The treatment with fine PS +IR 20 caused a less peak deceleration than coarse PS +IR 10. Total porosity, air-filled porosity, and capillary porosity increased with fine PS +IR 20. In Exp 2, compared to controls, however, there was a difference in turfgrass visual color after the termination of traffic treatment. There was no difference in root length. The treatment with fine PS + TD 10 resulted in the highest total clipping yield. As a result of soil physical analysis, soil penetration resistance was reduced by the treatments. The treatment with coarse PS resulted in a less peak deceleration than fine PS. In conclusion, turfgrass growth was increased by crumb rubber incorporation which enhanced soil physical properties. The crumb rubber topdressing was able to cushion the crown tissue area while still providing a smooth and uniform surface, improve overall turfgrass quality, and reduce compaction.

The Evaluation on the exiting greens of Hwasan Country Club by undisturbed Soil Core Analysis (토양 코아 분석을 통한 화산 골프장의 조성된 그린에 대한 평가)

  • 이상재;허근영;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.54-61
    • /
    • 1998
  • The subsurface environment of the root zone area can set the stae for "do or die" of the turfgrass plant. The good condition of the greens is verified by their physical properties. Therefore, this study was carried to evaluate on the existing green of Hwasan C.C. by undisturbed soil Core Anaysis. We completed the ISTRC SYSTEM BenchMarking of the undisturbed core samples taken from Green #1, Green #5, Green #9-"Best" area, and Green #9-"Stressed" area for the Hwasan C.C.. It was also our understanding that the greens were in "good" to "very good" conditioni. THe exception might be Green #9-"Stress" area, which was the stressed area. The stressed area was confined to a ridge across Green #9. The organic content test results comfirmed the development of organic layering in depth 0-2.5cm. For the amount of compaction in the upper root zones and te development of the green's respective organic layers, the infiltration rates were high in Green #1, Green #5, and Green #9 "Stressed" area. The depicted aerificaton hole might be the probable cause of the relatively high infiltraton rate. Green #9-"Best" area had a tested infiltration rate of 18.75cm/hr. Either this area had not been aerified, or the undisturbed sample did not contain a aerification cavity. The water retention capacity of the undisturbed samples was good. When the greens were first constructed, the original root zone mix had been relatively low water retention properties. And the bulk density and the porosity of the undisturbed samples were good. In the result, all the greens were similar except for the infiltration. Thus, we supposed that Green #9-"Stressed" area might be ainly influenced by the amount of irrigation water and the configuration of the green's surface. There had been a reduction in the amount of irrigation water as the water retention capacity in the greens was promoted. Especially, it had gradually become more of a problem as the green had matured in Green #9-"Stressed" area. Because Green #9-"Stressed" area was a ridge area. The reduction in the amount of irrigation water might be the probable cause of the stress in Green #9-"Stressed" area. Our final observation related to the soil texture and the particle size distribution of the sand. Though and sand contant of all the tested greens were good, the gravel content of them exceeded ISTRC Guidelines. In particle size distribution of the sand, the very coarse and the coarse content of all the tested greens exceeded, but the rest was insufficient. The stability is a function of the material retained on the 0.25mm mesh screen. But, the content of all the tested greens was very insufficient. Though all the greens was serviceable, the coarse root zone sands, such as the sand in the tested greens, tended to be "unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.;unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.ines.

  • PDF

Optimum N Fertilization at Panicle Initiation Stage on Ridge Direct Seeding on Dry Paddy of Rice as an Irrigation Water-Saving Cultural System (벼 휴립건답직파 절수재배에 알맞은 질소 수비량)

  • 최원영;박홍규;이기상;김상수;이재길;김순철;최선영
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.177-184
    • /
    • 2001
  • This study was conducted to identify the optimum nitrogen (N) fertilization at panicle initiation stage on ridge direct seeding on dry paddy of rice. During 1999~2000, a series of experiments was carried out at field (Chonbuk series) of the National Honam Agricultural Experiment Station, RDA using Dongjinbyeo. Plants were taller, and leaf area index and top dry weight increased with more N fertilization at panicle initiation stage. Photosynthetic rate of heading stage was higher at higher amounts of N fertilization at panicle initiation stage, especially in 6 kg/10a compared with 10 kg/10a seeding rate. Lodging index and its related traits did not significantly differ under different rates of N fertilization at panicle initiation stage. N uptake of the rice plant increased as more N fertilization at panicle initiation stage. N use efficiency was highest under the standard topdressing rate at 6 kg/10a seeding rate. Panicle number per m$^2$ increased with more topdressed N, but ripened grain rate and 1,000-grain weight of brown rice did not differ with an increase in topdressed N. Milled rice yield was 6% higher in the 6 kg/10a seeding rate and 13% higher in the 10 kg/10a seeding rate at 50% more topdressed N compared with 4.8 kg/10a N fertilization at panicle initiation stage of 6 kg/10a seeding rate.

  • PDF

Study on the Effect of Deep Fertilization on Paddy Field - Efficiency of Ball Complex Fertilizer Mixed with Zeolite - (수도(水稻)에 대(對)한 심층추비효과(深層追肥効果)에 관(關)한 연구(硏究) - Zeolite 첨가(添加) Ball complex 비료(肥料)의 비효(肥効) -)

  • Kim, Tai-Soon;U., Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 1977
  • A study was conducted in order to compare the topdressing method of the conventional fertilizers as control and the deep application method of the ball complex fertilizer newly developed. The ball complex fertilizer consisted of 5% of nitrogen, 5% of phosphorus, and 7% of potassium. Basal application of nitrogen for the rice plant was the same for both control plots and ball complex plots. One ball complex fertilizer per four hills was applied at depth of 12~13cm 35days before heading stage while control plot received three times topdressing at different growth stages as usual practice. The results obtained were as follows. 1. The ball complex fertilizer applied in the soil was continuously utilized by the rice plants until harvest time while nitrogen and potassium uptake of control plots was reduced rapidly after heading stage. Daily uptake of nitrogen and potassium per hill at maturing stage were 0.45mg and 0.68mg in control plots, but 4.80mg and 7.0mg respectively in ball complex plots. 2. Dry matter productivity of the rice plant in control plots, well coinciding with nutrients uptake pattern, was maximum just after heading stage decreased at maturing stage. But dry matter productivity in ball complex plots was much higher at maturing stage than at heading stage. 3. Ball complex application increased effective tillering rate, causing higher panicle number per hill. 4. Ball complex application brought about 528kg/10a of hulled grain yield while the conventional practice 423kg/10a. 5. Deep application of ball complex was superior to usual practice in terms of yield components such as panicle number per hill, filled grain number per panicle, maturing rate, and 1,000 grain weight. 6. From the morphological characteristics point of view, the deep application of ball complex made the flag leaf and the 2nd leaf heavier, larger and broader as compared to control treatment. 7. It is considered that by applying the ball complex fertilizer at depth of 12~13cm sufficient amount of nitrogen and potassium could be utilized by rice plants during the maturing stage and assimilated in the leaf blade, consequently making the flag leaf and the 2nd leaf bigger and healthier. The fact can easily explain that the ball complex plots had higher capacity of photosynthesis, less discoloration of lower leaves, bigger leaf area index, and better grain yield as compared to the conventional practice. In conclusion the deep application method of the ball complex fertilizer was superior to the routine topdressing method of the usual fertilizers.

  • PDF