• Title/Summary/Keyword: top-down process

Search Result 249, Processing Time 0.027 seconds

A Study on the Construction Process Management of the Top-Down Construction Method (Top-Down 공사의 공정관리 방법 연구)

  • Kang Hyun-Jung;Rhim Hong-Chul;Lee Ghang;Yun Dae-Jung;Kim Sang-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.133-136
    • /
    • 2006
  • The top-down construction method is an excavation and substructure construction method by excavating earth and building slabs from the ground level to the bottom of a building. The top-down method can be categorized into several types by its process and other technical details. Some of commonly used top-down methods in Korea today are S.O.G., N.S.T.D., and S.P.S. Among these, one method is chosen depending on construction field conditions, cost, construction time and so on. This study explores several factors that may affect the selection of a top-down method. This paper reports preliminary survey results with 54 top-down construction experts and comparison results of 5 top-down construction sites.

  • PDF

Load Carrying Capacity of Top Down Prefounded Columns on Different Excavation Schedule (굴착순서에 따른 Top Down 선기둥 지지력 산정)

  • Rhim, Hong-Chul;Hwang, Hee-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.4 s.22
    • /
    • pp.45-52
    • /
    • 2006
  • Top Down method is more widely used in downtown construction, recently. As underground construction constitutes a significant portion of the total construction cost and time in Top Down construction, it is important to develop a construction method to reduce the time required in underground works. The purpose of this study is to analyze load carrying capacity of Top Down prefounded columns on different excavation schedule. When several floors are excavated, the valid buckling length of prefounded column is increased and allowable buckling stress is decreased. The result shows that all columns are safe in buckling down to B3 story whether 2 or 3 stories are excavated. However, several columns are not safe from B4 story when 2 or 3 stories are excavated straightly. With these results, a process can be designed that the first three stories in the basement are excavated, and then excavate B4 story after placing concrete on B1 and B2 floor.

Study on Load Carrying Capacity of Top Down Prefounded Columns (Top Down 선기둥의 지지력 산정방법에 관한 연구)

  • Hwang Hee-Sun;Rhim Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.137-140
    • /
    • 2006
  • As underground construction is a large component of the cost of construction and a term of works in Top-Down construction, it is important to reduce the term of works in underground construction. The purpose of this study is to analyse buckling stress and load of prefounded columns as the process of excavation is changed, and propose a suitable process of excavation to increase the speed of works. When several floors are excavated, the valid buckling length of profounded column is increase and allowable buckling stress is decreased. The result shows that all columns are safe in buckling down to B3th story whether 2 stories or 3 stories are excavated straightly. However, several columns are not safe from B4th story when 2 or 3 stories are excavated straightly. With these results, a process can be designed that first B3 stories are excavated straightly, and then excavate B4th story putting concrete on B1st and B2nd story.

  • PDF

Framework of a CAD System to Support Design Process Modeling of Mechanical Products (기계 제품의 개념 설계를 위한 하향 설계 지원 CAD시스템의 개발)

  • 홍진웅;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.359-372
    • /
    • 2000
  • Current CAD systems are good enough to be used as a tool to manipulate three-dimensional shapes. This is a very important capability to be owned by a design tool because a major portion of designers'activities is spent on the shape manipulation in the design detailing process. However, the whole design process involves a lot more than the, shape manipulation. Currently, these remaining tasks, mostly logical reasoning process for the function realization together with structure decomposition in the top-down manner, are processed in the designer's brain. To support the top-down functional design process of a mechanical product, a system integrating the functional, structural and geometrical aspects of a product design in a unified environment is presented. Using this system, a designer can perform function decomposition, structure decomposition, and geometry detailing, and function verification activities in parallel and the whole design process it modeled resultantly. Once the whole design process is modeled, any redesign task can be automatically performed with the verification of the desired functions.

  • PDF

Implementation of the joint capability integration and development environment using CASE tool (전산지원 시스템 엔지니어링 도구를 이용한 합동능력 통합 및 개발 환경 구축 사례)

  • Kim, Jin Ill;Park, Jong Seon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.69-82
    • /
    • 2013
  • US DoD operated JCIDS(Joint Capability Integration and Development System) for top down requirement generation. Although the JCIDS can be a good practice for the countries which are trying to shift from bottom up to top down requirement generation, it contains many processes related with review and approval. In this study we structured a joint capability integration and development process from the JCIDS eliminating the organization dependent review or approval process so that it can be applied to any organization with some modification. Furthermore we implemented the process in the computer aided systems engineering tool, Cradle, for convenient use of the process. The result of this study can provide a basic process for top down capability development, and an efficient why of doing each element of the process using CASE tool.

Impact Analysis of Construction Delay: The Case of Defects In the Top-down Construction Method

  • Suk, Janghwan;Kwon, Woobin;Soe, Jang-woo;Cho, Hunhee
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.213-221
    • /
    • 2022
  • Defects are the risk factors in the construction process of buildings. They cause damage, delaying the construction duration. They especially cause adverse effects on the top-down construction method. This study analyzed the degree of construction delay induced by each work type, focusing on defects in the top-down method. Then, we derived construction delay induction coefficient from different work types in order by using the severity of construction delay per defect and the occurrence probability of defect; this assessment model measures the impact of defects on construction delay for each work type. Furthermore, by comparing each work type based on the defect frequency and the construction delay induction coefficient, we found work types that need to be administered attentively. We identified that plastering work was easy to overlook, requiring caution in defect management. This study provides an efficient defect management system suitable for the buildings that are built using the top-down construction method.

  • PDF

Directly Nano-precision Feature Patterning on Thin Metal Layer using Top-down Building Approach in nRP Process (나노 복화공정의 역방향 적층법을 이용한 직접적 나노패턴 생성에 관한 연구)

  • 박상후;임태우;양동열;공홍진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.153-159
    • /
    • 2004
  • In this study, a new process to pattern directly on a thin metal layer using improved nano replication printing (nRP) process is suggested to evaluate the possibilities of fabricating a stamp for nano-imprinting. In the nRP process, any figure can be replicated from a bitmap figure file in the range of several micrometers with nano-scaled details. In the process, liquid-state resins are polymerized by two-photon absorption which is induced by femto-second laser. A thin gold layer was sputtered on a glass plate and then, designed patterns or figures were developed on the gold layer by newly developed top-down building approach. Generally, stamps fur nano-imprinting have been fabricated by using the costly electron-beam lithography process combined with a reactive ion-etching process. Through this study, the effectiveness of the improved nRP process is evaluated to make a stamp with the resolution of around 200nm with reduced cost.

Numerical Analysis Based on Continuum Hypothesis in Nano-imprining process (연속체 개념에 기반한 나노 임프린트 공정해석 연구)

  • 김현칠;이우일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.333-338
    • /
    • 2003
  • Nano-imprint lithography(NIL) is a polymer embossing technique, capable of transferring nano-scale patterns onto a thin film of thermoplastics such as polymethyl methacrylate(PMMA) using this parallel process. Feature size down 10 nm have been demonstrated. In NIL, the pattern is formed by displacing polymer material, which can be squeeze flow of a viscous liquid. Due to the size of the pattern, a thorough understood of the process through experiments may be very different. Therefore we nead to resort to numerical simulation on the embossing process. Generally, there are two ways of numerical simulation on nano-scale flow, namely top-down and bottom-up approach. Top-down approach is a way to simulate the flow assuming that polymer is a continuum. On the contrary, in the bottom-up approach, simulation is peformed using molecular dynamics(MD). However, as latter method is not feasible yet. we chose the top-down approach. For the numerical analysis, two dimensional moving grid was used since the moving grid can predict the flow front. Effects of surface tension as well as the slip at the boundary were also considered.

  • PDF

Case Study of the Field-BIM for Precision Construction of Elevator Core Wall in Top-down Project (Top-down 공법 현장에서 엘리베이터 코어월 정밀 시공을 위한 시공 BIM의 적용 사례 연구)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.108-109
    • /
    • 2019
  • Top-down construction is a useful method of utilizing the working space, economic benefits and shorten the construction period. Precision construction of the elevator core is very important for safety of the top-down structure. In this study, the layout system for the field-BIM(Building Information Modeling) was used to precisely construct the elevator core in the basement and the ground. Through the layout system, it was possible to process the construction status, review the design results and construction errors, and confirm whether there is or not within the construction error range for elevator installation.

  • PDF

Structure and Construction Technology Analysis about Construction Sequence Change for Superstructure Construction Period Reduction in Top-down Method (역타공법 중심의 골조 공기단축을 위한 시공시퀀스 변경에 따른 구조해석 및 요소기술 분석)

  • Park, Yong-Hyeon;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.101-109
    • /
    • 2019
  • The purpose of this study is to improve a general Top-Down construction process for superstructure construction period reduction. In a general Top-Down construction sequence, the ground floor slab is set up first. Subsequently, 1st basement level construction including core walls is constructed. Initiation of the ground level superstructure gets waited until then. In this study, removable deck plate installation on the bottom of the core walls of ground level is preceding the concrete casting, therefore, ground level superstructure construction is able to get started earlier. Up to first typical floor concrete casting, total of seventy-two working(calendar) days will be resulted in a reduction from the total construction periods.