• Title/Summary/Keyword: top emission

Search Result 295, Processing Time 0.029 seconds

Layer Thickness-dependent Electrical and Optical Properties of Bottom- and Top-emission Organic Light-emitting Diodes

  • An, Hui-Chul;Na, Su-Hwan;Joo, Hyun-Woo;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.28-30
    • /
    • 2009
  • We have studied organic layer-thickness dependent electrical and optical properties of bottom- and top-emission devices. Bottom-emission device was made in a structure of ITO(170 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(100 nm), and a top-emission device in a structure of glass/Al(100 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(25 nm). A hole-transport layer of TPD (N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine) was thermally deposited in a range of 35 nm and 65 nm, and an emissive layer of $Alq_3$ (tris-(8-hydroxyquinoline) aluminum) was successively deposited in a range of 50 nm and 100 nm. Thickness ratio between the hole-transport layer and the emissive layer was maintained to be 2:3, and a whole layer thickness was made to be in a range of 85 and 165 nm. From the current density-luminance-voltage characteristics of the bottom-emission devices, a proper thickness of the organic layer (55 nm thick TPD and 85 nm thick $Alq_3$ layer) was able to be determined. From the view-angle dependent emission spectrum of the bottom-emission device, the peak wavelength of the spectrum does not shift as the view angle increases. However, for the top-emission device, there is a blue shift in peak wavelength as the view angle increases when the total layer thickness is thicker than 140 nm. This blue shift is thought to be due to a microcavity effect in organic light-emitting diodes.

Application of Parylene Passivation for Top Emission Oragnic Light Emitting Diode (Top emission Organic Light Emitting Diode을 위한 Parylene 보호층의 적용)

  • Choi, Sung-Hoon;Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In;Oh, Myung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.160-163
    • /
    • 2005
  • Top emission OLED 소자의 안정성 위하여 Parylene을 보호층으로 적용하였다. 고분자화 방법을 이용하여 증착된 Parylene은 진공공정상온에서 증착가능하기 때문에 열에 의한 OLED 소자의 열화를 방지하며 높은 광투과율과 우수한 투습습성에 의하여 고효율 장수명을 OLED 소자에 적합하다. Parylene 5 ${\mu}m$ 의 광투과율은 90 %이상 측정 되었으며 투습율은 0.4849 $g/m^2day$로 측정되었다. Parylene의 보호층로서의 영향을 살펴보기 위하여, 보호층이 형성된 소자와 보호층이 형성되지 않은 소자를 제작하여 대기중에서 그 특성을 측정 비교하였다. 두 제작된 top emission OLED 소자는 최대 휘도가 1000 $cd/m^2$ 이상 측정되었으며, parylene 보호층 공정에 의한 소자의 구동 특성 변화는 나타나지 않았다. 대기중에서 초기휘도 200 $cd/m^2$로 측정된 parylene 보호층이 형성된 소자는 수명이 5 이었고, 보호층이 형성되지 않는 소자의 수명에 비하여 2배 이상 증가하였다.

  • PDF

다공질 실리콘을 이용한 전계 방출 소자

  • 주병권
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.92-97
    • /
    • 2002
  • We establish a visible light emission from porous polycrystalline silicon nano structure(PPNS). The PPNS layer are formed on heavily doped n-type Si substrate. 2um thickness of undoped polycrystalline silicon deposited using LPCVD (Low Pressure Chemical Vapor Deposition) anodized in a HF: ethanol(=1:1) as functions of anodizing conditions. And then a PPNS layer thermally oxidized for 1 hr at $900 ^{\circ}C$. Subsequently, thin metal Au as a top electrode deposited onto the PPNS surface by E-beam evaporator and, in order to establish ohmic contact, an thermally evaporated Al was deposited on the back side of a Si-substrate. When the top electrode biased at +6V, the electron emission observed in a PPNS which caused by field-induces electron emission through the top metal. Among the PPNSs as functions of anodization conditions, the PPNS anodized at a current density of $10mA/cm^2$ for 20 sec has a lower turn-on voltage and a higher emission current. Furthermore, the behavior of electron emission is uniformly maintained.

  • PDF

Top Emission Organic Light Emitting Diode with Transparent Cathode, Ba-Ag Double Layer

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.23-26
    • /
    • 2006
  • We fabricated top emission organic light emitting diode (TEOLED) with transparent metal cathode Barium and Silver bilayer. Very thin Ba/Ag bilayer was deposited on the organic layer by thermal evaporation. This cathode showed high transmittance over 70% in visible range, and the device with a Ba-Ag has a low turn on voltage and good electrical properties.

Characteristics of top emission PLED by metal anodes (금속 애노드의 종류에 따른 Top Emission 특성 평가)

  • Lee, Chan-Jae;Moon, Dae-Kyu;Kwak, Min-Gi;Kim, Young-Hoon;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.968-971
    • /
    • 2002
  • Hole injection characteristics have been investigated with various metal anodes such as Ni, Pt, Cu, and AI for the top emission polymer light emitting diodes (PLEDs). Devices were composed of metal anode, Poly(3,4-ethylenedioxythiophene) doped with polystyrene sultponated acid (PEDT:PSS), poly [2-methoxy-5-(2-ethylhexyoxy)-1,4-phenylene-vinylene] (MEH-PPV) and Al cathode. The hole injection from ITO anode has been also investigated for the comparison. The I-V characteristics of the PLEDs with different metal anodes were measured. The work function of the anode is strongly related to the hole injection of the device. The current density of the device with Ni anode with higher work function was higher than that of the device with ITO or AI anode at the same operating voltage.

  • PDF

Recent Progress on Voltage Drop Compensation in Top Emission Organic Light Emitting Diodes (OLED)

  • Jeong, Byoung-Seong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • The voltage drop due to the thin cathode film at the large size top emission OLED panel was successfully compensated with making electrical contact between thin cathode and anode auxiliary electrode by 355nm wavelength of laser. It was found that the luminance uniformity dramatically increased from around 15% to more than 80% through this electrical compensation between thin cathode and anode auxiliary electrode. Moreover, the removing process for EL materials on the anode auxiliary electrode process by laser was very reliable and stable. Therefore, it is thought that the EL removal method using laser to make electrical contacts is very appropriate to mass production for such a large size top emission OLEDs to obtain high uniformity of luminance.

Effects of indium tin oxide top electrode formation conditions on the characteristics of the top emission inverted organic light emitting diodes

  • Kho, Sam-Il;Cho, Dae-Yong;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.714-716
    • /
    • 2002
  • Indium tin oxide (ITO) was used as the top anode of top emission inverted organic light emitting diodes (TEIOLEDs). TEIOLEDs were fabricated by deposition of an aluminum bottom cathode, an N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1, 1'-diphenyl-4, 4 1'-diamine (TPD) hole transport layer, a tris-8-hydroxyquinoline aluminum ($Alq_3$) emission layer, and an ITO top anode sequentially. ITO was deposited by r.f. magnetron sputtering without $O_2$ flow during the deposition. After the deposition, the deposited ITO layer was kept under oxygen atmosphere for the oxidation. The characteristics of the TEOILED were affected significantly by the post-deposition oxidation condition.

  • PDF

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

Field Emission properties of Porous Polycrystalline silicon Nano-Structure (다결정 다공질 실리콘 나노구조의 전계 방출 특성)

  • Lee, Joo-Won;Kim, Hoon;Park, Jong-Won;Lee, Yun-Hi;Jang, Jin;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.69-72
    • /
    • 2002
  • We establish a visible light emission from porous polycrystalline silicon nano structure(PPNS). The PPNS layer are formed on heavily doped n-type Si substrate. 2um thickness of undoped polycrystalline silicon deposited using LPCVD (Low Pressure Chemical Vapor Deposition) anodized in a HF: ethanol(=1:1) as functions of anodizing conditions. And then a PPNS layer thermally oxidized for 1 hr at $900^{\circ}C$. Subsequently, thin metal Au as a top electrode deposited onto the PPNS surface by E-beam evaporator and, in order to establish ohmic contact, an thermally evaporated Al was deposited on the back side of a Si-substrate. When the top electrode biased at +6V, the electron emission observed in a PPNS which caused by field-induces electron emission through the top metal. Among the PPNSs as functions of anodization conditions, the PPNS anodized at a current density of $10mA/cm^{2}$ for 20 sec has a lower turn-on voltage and a higher emission current. Furthermore, the behavior of electron emission is uniformly maintained.

  • PDF

Development of Plasma Damage Free Sputtering Process for ITO Anode Formation Inverted Structure OLED

  • Lee, You-Jong;Jang, Jin-N.;Yang, Ie-Hong;Kim, Joo-Hyung;Kwon, Soon-Nam;Hong, Mun-Pyo;Kim, Dae-C.;Oh, Koung-S.;Yoo, Suk-Jae;Lee, Bon-J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1323-1324
    • /
    • 2008
  • We developed the Hyper-thermal Neutral Beam (HNB) sputtering process as a plasma damage free process for ITO top anode deposition on inverted Top emission OLED (ITOLED). For examining the effect of the HNB sputtering system, Inverted Bottom emission OLEDs (IBOLED) with ITO top anode electrode were fabricated; the characteristics of IBOLED using HNB sputtering process shows significant suppression of plasma induced damage.

  • PDF