• Title/Summary/Keyword: tool clamping

Search Result 53, Processing Time 0.028 seconds

A Study on the Chatter Suppression by Inserting Viscoelastic Materials between Tool and Toolpost (공구고정부에 점탄성재료 삽입을 통한 채터감소에 관한 연구)

  • Yoo, Young-Kee;Sim, Song;Kim, Kwang-Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.875-885
    • /
    • 1989
  • This work is concerned with the chatter suppression by inserting viscoelastic materials into tool clamping area. Chatter was observed with and without the viscoelastic materials during cutting tests, where the overhang of the tool was made long so that the tool may be a major cause for the chatter. Two viscoelastic materials were used and the effects of thickness and prestrain were investigated. impact tests were performed on the tool in cases where the tool post was set on the cross slide and was free from any boundary conditions. Material properties of the viscoelastic materials were also obtained from resonance test results. The effects on the chatter suppression by the type of the viscoelastic material and prestrain are discussed in relation with the measured material properties.

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

A study on the drawing characteristics of drawbead by F.F.M (유한요소법에 의한 드로오비드 인출특성 연구)

  • 신양호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.42-47
    • /
    • 1997
  • In this study, the drawing characteristics of circular drawbead are examined with the plane strain elastic-plastic FE Method by varying the process variables such as friction coefficient, drawbead radius, and closing depth. Numerical analysis are carried out by 2-D elastic-plastic F.E.M. The results are compared with the existing experimental results about the drawing force, the die clamping force, and the strain distribution of upper and lower sheet faces

  • PDF

DECISION SUPPORT SYSTEM FOR CUTTING PARAMETERS SELECTION IN MACHINING PROCESSES USING FUZZY KNOWLEDGE

  • Balazinski, M.;Bellerose, M.;Czogala, E.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.798-801
    • /
    • 1993
  • This paper presents the decision support system using fuzzy knowledge to adapt the cutting conditions chosen by a conventional expert system to a particular machine tool, workpiece and clamping system. These preliminary results demonstrate the capability of fuzzy logic to adjust cutting parameters taking into account parameters difficult to quantify.

  • PDF

Development of the Method for Inspecting the Clamping Force of Torque Shear Bolts Using the Electricity energy of Electric torque wrench (전동렌치 전기에너지를 이용한 토크쉬어볼트의 체결축력 검사기법 개발)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Kim, Kang-Sik;Kim, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • The torque-coefficient of torque-shear type high-strength bolts is affected by the environmental factors, such as 'wet', 'rust', 'exposure to air' and workability during tightening high strength bolts. It is difficult to assume the direct tension induced into the bolt due to variation of torque-coefficient for torque-shear type high-strength bolts. Therefore, it is essential to measure tension loads of bolts and to verify the clamping force under construction. In this study, the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter. The regression analysis equation to measure the direct tension was derived by statistical analysis using Minitab program. It is considered that the trial product is reliable tool to evaluate the tension force comparable to a commercial torque wrench.

Injection Molding Analysis for Narrow-Pitched FPC Connectors (협 피치 FPC 커넥터의 사출 성형 해석)

  • Yoon, Seon-Jin;Heo, Young-Moo;Han, Mu-kun;Jung, Min-young;Kang, Woo-Seung
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • The narrow-pitched connectors are of interest for small-scale devices such as smart phones because of theirs caling. We conducted an injection molding analysis and a warp analysis for 0.3mm and 0.5mm pitch FPC connectors. We obtained a volumetric shrinkage of 4.344%, a clamping force of 0.2529 tonne, a maximum injection pressure of 76.3 MPa as optimized molding conditions for the 0.3mm pitch FPC connector. We found that, compared with the traditional injection molding technique, the injection molding for narrow-pitched connectors comes with distinct features like low clamping force, high injection molding pressure, and narrow gate size. Adding to the optimization analysis, the deflection of 0.5mm pitch FPC connector was analyzed as well. A maximum deflection of 0.053mm was calculated, which the actual deflection of 0.062mm was compared to. The results deduced a relative error of 17%. We conclude that the deflection analysis along with the optimization analysis can be used as an effective tool to predict the behavior of narrow-pitch connectors although the relative error may need to improve.

  • PDF

Micro/Meso Cutting with Micro Turning Lathe (Micro 선반을 이용한 Micro/Meso 절삭에 관한 연구)

  • 고태조;김희술;배영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1025-1028
    • /
    • 2002
  • In this paper, a micro-turning lathe is introduced for micro machining of aluminum rod. To give feed motion, stepwise motion[2] actuators are used instead of the conventional inchworm mechanism. These are consisted of two Piezoelectric ceramics; one is for feeding the slider, and the other is for clamping the slider in the guide way of the body. The guide is V-form. The linearity and positional accuracy of the actuators is good enough far high precision motion. Since the system is more compact than the conventional system using three Piezoelectric ceramics, it is applicable for the micro-machine or MEMS unit. To fabricate the lathe, a small spindle unit with ball bearings of diameter of 10 millimeter is built-up on the top the slider. The motion is feed backed with miniaturized linear encoder attached each axis slider. The diamond tool bite is used for cutting tool. The machining is tried to make small diameter rod. The possible diameter that can be machined in this machine is presented as well as chip formation, surface roughness, and machinability.

  • PDF

Design of Micro-Machining System for Micro/Meso Mechanical Component (Micro/Meso부품 대응형 마이크로 기계가공시스템 기술 연구)

  • Park J.K.;Kyung J.H.;Ro S.K.;Kim B.S.;Park J.H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper describes the design of micro machine tools system for mechanical machining of micro/meso scale mechanical parts. The micro machining systems such as $\mu-Late$, $\mu-milling/drilling$ machine and $\mu-grinding$ machine are the basic elements constructing $\mu-factory$ which gains more attention recently because of increasing needs of mico and nano-parts in various industrial and medical area. A miniaturized 3-axis milling machine with VCM stage and air spindle and palm-top size micro-late are designed, and air bearing stage and stepwise linear motion system with PZT are studied for motion system. The micro cutting characteristics are investigated experimentally, and reconfigurable machine structures are also considered.

  • PDF

Development of High Load/Large Displacement Actuator for Micro-press (마이크로 프레스용 고하중/대변위 액츄에이터 개발)

  • KIM B. H.;NAM K. S.;CHOI J. P.;KIM H. Y.;LEE N. K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.458-461
    • /
    • 2005
  • In this paper, a new type of inchworm motion actuator is developed in fabrication of actuators for micro-press machine. This is consisted of three piezoelectric actuators, one is for moving the tool guide and the other are for clamping the guide. The inchworm motor provides both high load and large displacement in small size actuator. PZT has compressive strength and often fails under tensile stress and pulling. Thus, in order to prevent failure, we have designed pre-load housing and accomplished FEM analysis. The pre-load housing was used for determining the optimal design condition by comparing the von-mises stresses with the change of hinge stiffness. Also, in order to predict the performance of the motor under certain conditions, the system model was simulated using MATLAB. This is open loop control actuator and driven by the period of input voltage.

  • PDF