• 제목/요약/키워드: toluene degradation

Search Result 127, Processing Time 0.031 seconds

PSEUDOMONAS MANDOSINA BCNU 154에 의한 BTEX 분해

  • Jeong, Mi-Yeon;Gang, Jeong-Han;Lee, Sang-Hui;Jeong, Yeong-Gi;Kim, Yong-Gyun;Ju, U-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.485-488
    • /
    • 2000
  • Degradation of aromatic compound by Pseudomonas mendocina BCNU 154 has been investigated. The microorganism utilizes xylene, toluene, nitrobenzene, ethylbenzene and cumene. This strain is tolerant to some heavy metals, such as Mn, Cu, Si, and Mo, and resistant to some antibiotics, such as vancomycin, chloramphenicol and ampicillin. The metabolic pathway of toluene in Pseudomonas mendocina BCNU 154 is also elucidated.

  • PDF

Degradation of Aromatic Pollutants by UV Irradiation (UV조사에 의한 방향족오염물의 분해)

  • Min, Byoung-Chul;Kim, Jong-Hyang;Kim, Byung-Kwan
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.502-509
    • /
    • 1997
  • Aromatic pollutants(benzene, toluene, ethylbenzene and xylenes) were photodegraded by using a UV oxidation and the rates of degradation were investigated under various reaction conditions. Each of the solution containing 50 ppm benzene, 150 ppm ethylbenzene and 250 ppm xylenes was found UV-photodegraded over 90% in 1 hour of reaction time, wheras the only was 43 % degradation was obtained with 350 ppm toluene solution. A single component solution was more degradable than a mixed component solution and benzene was almost photodegraded at a pH 4.0, 6.4 and 10.0 after reaction time is 1 hr, ehtylbenzene was photodegraded about 92%(pH 4.0), 90%(pH 6.4) and 91%(pH 10.0), xylenes was photodegraded about 95%(pH 4.0), 90%(pH 6.4) and 92%(pH 10.0), but toluene was photodegraded about 80%(pH 4.0), 43%(pH 6.4) and 70%(pH 10.0), respectively. Kinetics studies show that the rate of decay in TOC(total organic carbon) were pseudo first-order rate except ethylbenzene, and then we could evaluate mineralization rate constants(k) of aromatics.

  • PDF

Characterization of Pseudomonas putida 1K1 Capable of Growing on Extremely High Concentration of Toluene (고농도 Toluene에서 생육 가능한 Pseudomonas putida 1K1의 특성)

  • Cho, Kyung-Yun;Chun, Hyo-Kon;Han, Dong-Cho;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.236-240
    • /
    • 1989
  • The isolated bacterial strain 1K1 able to grow on extremely high concentration of toluene was morphologically and physiologically best described as Pseudomonas putida. This strain could grow on at least eight aromatic compounds, e.g., benzene, benzoate, phenol, o-cresol, m-cresol, toluene, m-tolunte, and xylene, but did not Brow on alkanes, such as hexane, octane, decane, and cyclohexane. Strain 1K1 could grow on above 95% toluene, but it could not grow on above 1% of other aromatic compounds. In the point of survival, strain 1K1 was resistant to high concentration of alkanes, appreciably resistant to toluene and xylene, and damaged by to other aromatic compounds. Strain 1K1 which grew on high concentration of toluene had irregular cell shape in comparing with normal cell shape of the genus Pseudomonas. Strain 1K1 was shown to have at least two aromatic compound dissimilation pathway, one for benzoate and the other for toluene.

  • PDF

Effect of Electron Acceptors on the Anaerobic Biodegradation of BTEX and MTBE at Contaminated Sites (전자 수용체가 BTEX, MTBE로 오염된 토양의 혐기성 자연정화에 미치는 영향)

  • Kim, Won-Seok;Kim, Ji-Eun;Baek, Ji-Hye;Sang, Byoung-In
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.403-409
    • /
    • 2005
  • Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Then, groundwater contamination problems have been developed in areas where the chemical is used. Common sources of water contamination by BTEX and MTBE include leaking underground gasoline storage tanks and leaks and spills from above ground fuel storage tanks, etc. In oil-contaminated environments, anaerobic biodegradation of BTEX and MTBE depended on the concentration and distribution of terminal electron acceptor. In this study, effect of electron acceptor on the anaerobic biodegradation for BTEX and MTBE-contaminated soil was investigated. This study showed the anaerobic biodegradation of BTEX and MTBE in two different soils by using nitrate reduction, ferric iron reduction and sulfate reduction. The soil samples from the two fields were enriched for 65 days by providing BTEX and MTBE as a sole carbon source and nitrate, sulfate or iron as a terminal electron acceptor. This study clearly shows that degradation rate of BTEX and MTBE with electron acceptors is higher than that without electron acceptors. Degradation rate of Ethylbenzene and Xylene is higher than that of Benxene, Toluene, and MTBE. In case of Benzene, Ethylbenzene, and MTBE, nitrate has more activation. In case of Toluene and Xylene, sulfate has more activation.

Evaluation of Natural Attenuation of Petroleum Hydrocarbons in a Shallow Sand Aquifer: a Modeling Study (자연저감 모델링 연구)

  • 이진용;이명재;이강근;이민효;윤정기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.128-131
    • /
    • 2001
  • We evaluated natural attenuation of petroleum hydrocarbons in a shallow aquifer using a modeling study. The studied shallow aquifer was severely contaminated with petroleum hydrocarbons, especially toluene, ethylbenzene and xylenes (i.e, TEX). The exact spill history was not known. Therefor we used a contaminant level in May 1999 (the first sampling date of our integrated study) as an initial contaminant concentration. we calibrated required transport parameters using the contamination levels obtained from groundwater analyses in September of 1999. For fate and transport of the petroleum contaminants, five case 2 with sorption and degradation. case 3 with sorption and degradation (half decay constant compared with case 2), case 4 with degradation but no sorption, and case 5 with sorption but no degradation. For sorption and degradation, a linear sorption isotherm and first order irreversible decay was assumed, respectively and no additional contamination source to groundwater is also assumed.

  • PDF

Benzene, toluene, ethylbenzene 그리고 세가지 xylene isomer를 분해하는 유기용매 내성세균 Pseudomonas savastanoi BCNU 106의 분리 및 분해 특성

  • Kim, Jong-Su;Park, Hyeong-Cheol;Jo, Su-Dong;Lee, Seung-Han;Bae, Yun-Wi;Mun, Ja-Yeong;Jeong, Yeong-Gi;Ju, U-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.382-385
    • /
    • 2003
  • Organic solvent tolerant bacterium, designated as strain BCNU 106 is a gram negative, rod-shaped aerobe and grows on benzene, toluene, ethylbenzene, and xylenes (BTEX) as a sole carbon source. According to 16S rDNA analysis and fatty acid analysis, strain BCNU 106 showed highest similarity to Pseudomonas syringae var. savastanoi (Pseudomonas savastanoi). Strain BCNU 106 was able to utilize toluene, ethylbenzene, both o-, m-, p-xylene , m-cresol and o-cresol. The degradation of o-, m-, p-xylene by strain BCNU 106 is particularly important, since o-xylene is a compound of considerable environmental interest, owing to its recalcitrance; and very few microorganism have been reported to utilize both o-, m-, p-xylene as a sole carbon source.

  • PDF

A Study on the Photocatalytic Oxidation of Trichloroethylene in Air (이산화티타늄($TiO_2$) 광촉매 산화 반응에 이용한 트리클로로에틸렌(TCE) 처리에 관한 연구)

  • 정창훈;서정민;김석택;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.521-528
    • /
    • 2000
  • Photocatalyzed degradation of trace level trichloroethylene(TCE) and toluene in air was carried out over near UV illuminated titanium doxide(anatase) pellet in a flow reactor. The authors investigaed the effects of humidity and trace contaminant levels on the oxidation rates of toluene. Inlet concentrations of TCE and toluene were 10∼100ppm. TCE photooxidation was very rapid under what conditions, and almost 100% conversion was achieved for TCE(up to 70 ppm) as a single air contaminant. An important finding was that competitive adsorption between humidity and trace contaminants has a significant effect on the oxidation rate of what.

  • PDF

Removal Characteristics of Toluene in Biofilters Packed with Reticulated-PU-Foams of Different Porosities (서로 다른 공극률의 망상형 폴리우레탄들이 충전된 바이오필터에서 톨루엔 제거 특성)

  • 명성운;남윤수;이용우;최호석
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.448-454
    • /
    • 2003
  • We studied on the removal of toluene vapors in a lab-scale biofilter. There are three biofilters packed with reticulated polyurethane foams of different porosities of 15, 25, 45 PPI (Pore Per Inch) as media. A toluene-degrading strain (Pseudomonas Putida KCCM 11348, ATCC 12633) was naturally immobilized on the filter media by circulating the culture media. Three biofilters were operated under different sets of continuous experiments, varying both the design and operation parameters such as the inlet toluene concentration and the flow rate. Maximum elimination capacity of 115.5g/㎥hr of biofilter packed with foams of 25 PPI was obtained for toluene degradation. The effect of operating conditions such as flow rate, inlet toluene concentration and porosity on the performance of the biofilter was investigated.

Development for UV/TiO2 Photocatalytic Oxidation Indoor Air Compound Process (광촉매/광산화를 이용한 VOCs 처리장치 개발)

  • Jeon, Bo-Kyung;Choi, Kum-Chan;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.855-864
    • /
    • 2006
  • This study introduces a method to eliminate formaldehyde and benzene, toluene from indoor air by means of a photocatalytic oxidation reaction. In the method introduced, for the good performance of the reaction, the effect and interactions of the $TiO_2$ catalyst and ultraviolet in photocatalytic degradation on the reaction area, dosages of catalysts, humidity and light should be precisely examined and controled. Experiments has been carried out under various intensities of UV light and initial concentrations of formaldehyde, benzene and toluene to investigate the removal efficiency of the pollutants. Reactors in the experiments consist of an annular type Pyrex glass flow reactor and an 11W germicidal lamp. Results of the experiments showed reduction of formaldehyde, benzene and toluene in ultraviolet $/TiO_2/$ activated carbon processes (photooxidation-photocatalytic oxidation-adsorption processes), from 98% to 90%, from 98% to 93% and from 99% to 97% respectively. Form the results we can get a conclusion that a ultraviolet/Tio2/activated carbon system used in the method introduced is a powerful one for th treatment of formaldehyde, benzene and toluene of indoor spaces.