• Title/Summary/Keyword: toll-like receptor 4

Search Result 216, Processing Time 0.023 seconds

Suppression of the Expression of Cyclooxygenase-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists by 6-Shogaol (6-Shogaol의 Toll-like receptor 2, 3, 4 agonists에 의해서 유도된 cyclooxygenase-2 발현 억제)

  • Kim, Jeom-Ji;An, Sang-Il;Lee, Jeon-Su;Yun, Sae-Mi;Lee, Mi-Yeong;Yun, Hyeong-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.332-336
    • /
    • 2008
  • Ginger is widely used as a traditional herbal medicine. Both ginger and its extracts have been used to treat many chronic inflammatory conditions via the inhibition of nuclear factor-kappa B (NF-${\kappa}B$) activation, which results in the suppression of cyclooxygenase-2 (COX-2) expression. However, the mechanisms as to how ginger extracts mediate their health effects are largely unknown. Toll-like receptors (TLRs) trigger anti-microbial innate immune responses, recognizing conserved microbial structural molecules that are known as pathogen-associated molecular patterns. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$. The activation of NF- ${\kappa}B$ leads to the induction of inflammatory gene products, including cytokines and COX-2. This study reports the biochemical evidence that 6-shogaol, an active compound in ginger, inhibits NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Furthermore, 6-shogaol inhibited NF-${\kappa}B$ activation induced by the following downstream signaling components of the TLRs: MyD88, $IKK{\beta}$, and p65. These results imply that ginger can modulate immune responses that could potentially modify the risk of many chronic inflammatory diseases.

Interaction of Der p 2 with Toll-like Receptor 4 and its Effect on Cytokine Secretion

  • Park, Beom Seok;Lee, Na Rae;Kim, Mun Jeong;Kim, Seong Yeol;Kim, In Sik
    • Biomedical Science Letters
    • /
    • v.21 no.3
    • /
    • pp.152-159
    • /
    • 2015
  • Der p 2, which is a major allergen of house dust mite, plays an important role in the pathogenesis of allergic disease. There is controversy regarding whether Der p 2 binds to Toll-like receptor 4 (TLR4), and its inflammatory effect has not yet been elucidated. In the current study, we examined the interaction of Der p 2 with TLR4 and the effect of Der p 2 on cytokine release in THP-1 cells and lymphocytes. Among house dust mite extracts, recombinant TLR4 protein interacted with Der p 2. The overall structure of Der p 2 is characteristic of the immunoglobulin superfamily and contains ten ${\beta}-strands$, forming a ${\beta}-cup$ fold with two anti-parallel ${\beta}-sheets$, and a short 310 helix. The two sheets can be separated, further allowing the formation of a large internal pocket, which is narrow and suitable for binding large flat molecules such as lipid-like molecules. Der p 2 caused increased secretion of IL-6, IL-8, and MCP-1, which are neutrophil survival factors, in human monocytic THP-1 cells in a time-dependent manner. Der p 2 also induces the release of cytokines in normal and allergic lymphocytes. Supernatant after treatment with Der p 2 inhibited neutrophil apoptosis. In coculture of lymphocytes with neutrophils, Der p 2 inhibited spontaneous apoptosis of allergic neutrophils. In summary, Der p 2 binds to TLR4 and induces an inflammatory response such as cytokine secretion in immune cells. These findings may enable elucidation of allergy pathogenesis by specific allergen of house dust mite.

Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells (RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura is a brown macroalgae that is found worldwide. Although several genera of Desmarestia have been reported as having anti-tumorigenic, anti-melanogenic, and photoprotective properties, the anti-inflammatory activity of D. tabacoides Okamura has not yet been evaluated. In this study, we analyzed the anti-inflammatory mechanisms of D. tabacoides Okamura ethanol extract (DTEE) via the inhibition of nitric oxide (NO) and prostaglandin (PG) E2 production and the expression of their corresponding enzymes, inducible NO synthase (iNOS), and cyclooxygenase (COX)-2. In addition, their upstream signaling molecules were evaluated by Western blot analysis, such as nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and phosphoinositide-3-kinase (PI3K)/Akt, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The DTEE treatment significantly inhibited LPS-induced NO and PGE2 production as well as the expression of their corresponding enzymes, iNOS, and COX-2 without cytotoxicity. The stimulated transcription factor NF-κB and upstream signaling molecules extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 were attenuated by the DTEE treatment, which was statistically significant, while Akt did not provide any inhibitory effect. Moreover, the DTEE treatment significantly mitigated the LPS-activated adaptor molecules, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) in the RAW 264.7 cells. These results suggest that DTEE attenuates TLR4-mediated inflammatory responses by inhibiting NF-κB activation and suppressing MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.

Neoagarohexaose-mediated activation of dendritic cells via Toll-like receptor 4 leads to stimulation of natural killer cells and enhancement of antitumor immunity

  • Lee, Moon Hee;Jang, Jong-Hwa;Yoon, Gun Young;Lee, Seung Jun;Lee, Min-Goo;Kang, Tae Heung;Han, Hee Dong;Kim, Hyuk Soon;Choi, Wahn Soo;Park, Won Sun;Park, Yeong-Min;Jung, In Duk
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.263-268
    • /
    • 2017
  • ${\beta}$-Agarase cleaves the ${\beta}$-1,4 linkages of agar to produce neoagarooligosaccharides (NAO), which are associated with various physiological functions. However, the immunological functions of NAO are still unclear. In this study, we demonstrated that ${\beta}$-agarase DagA-produced neoagarohexaose (DP6), an NAO product, promoted the maturation of dendritic cells (DCs) by Toll-like receptor 4 (TLR4). DP6 directly and indirectly enhanced the activation of natural killer (NK) cells in a TLR4-dependent manner in vitro and in vivo. Finally, the antitumor activity of DP6 against B16F1 melanoma cells was inhibited in NK cell-depletion systems by using NK-cell depleting antibodies in vivo. Collectively, the results indicated that DP6 augments antitumor immunity against B16F1 melanoma cells via the activation of DC-mediated NK cells in a TLR4-dependent manner. Thus, DP6 is a potential candidate adjuvant that acts as an immune cell modulator for the treatment of melanoma.

Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway

  • Xu, Hong-Lin;Chen, Guang-Hong;Wu, Yu-Ting;Xie, Ling-Peng;Tan, Zhang-Bin;Liu, Bin;Fan, Hui-Jie;Chen, Hong-Mei;Huang, Gui-Qiong;Liu, Min;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.156-166
    • /
    • 2022
  • Background: Panax ginseng Meyer (P. ginseng), a herb distributed in Korea, China and Japan, exerts benefits on diverse inflammatory conditions. However, the underlying mechanism and active ingredients remains largely unclear. Herein, we aimed to explore the active ingredients of P. ginseng against inflammation and elucidate underlying mechanisms. Methods: Inflammation model was constructed by lipopolysaccharide (LPS) in C57BL/6 mice and RAW264.7 macrophages. Molecular docking, molecular dynamics, surface plasmon resonance imaging (SPRi) and immunofluorescence were utilized to predict active component. Results: P. ginseng significantly inhibited LPS-induced lung injury and the expression of proinflammatory factors, including TNF-α, IL-6 and IL-1β. Additionally, P. ginseng blocked fluorescencelabeled LPS (LPS488) binding to the membranes of RAW264.7 macrophages, the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Furthermore, molecular docking demonstrated that ginsenoside Ro (GRo) docked into the LPS binding site of toll like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) complex. Molecular dynamic simulations showed that the MD2-GRo binding conformation was stable. SPRi demonstrated an excellent interaction between TLR4/ MD2 complex and GRo (KD value of 1.16 × 10-9 M). GRo significantly inhibited LPS488 binding to cell membranes. Further studies showed that GRo markedly suppressed LPS-triggered lung injury, the transcription and secretion levels of TNF-α, IL-6 and IL-1β. Moreover, the phosphorylation of NF-κB and MAPKs as well as the p65 subunit nuclear translocation were inhibited by GRo dose-dependently. Conclusion: Our results suggest that GRo exerts anti-inflammation actions by direct inhibition of TLR4 signaling pathway.

Fusobacterium nucleatum GroEL signaling via Toll-like receptor 4 in human microvascular endothelial cells

  • Lee, Hae-Ri;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.130-136
    • /
    • 2012
  • The GroEL heat-shock protein from Fusobacterium nucleatum, a periodontopathogen, activates risk factors for atherosclerosis in human microvascular endothelial cells (HMEC-1) and ApoE-/- mice. In this study, we analyzed the signaling pathways by which F. nucleatum GroEL induces the proinflammatory factors in HMEC-1 cells known to be risk factors associated with the development of atherosclerosis and identified the cellular receptor used by GroEL. The MAPK and NF-${\kappa}B$ signaling pathways were found to be activated by GroEL to induce the expression of interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), E-selectin, and tissue factor (TF). These effects were inhibited by a TLR4 knockdown. Our results thus indicate that TLR4 is a key receptor that mediates the interaction of F. nucleatum GroEL with HMEC-1 cells and subsequently induces an inflammatory response via the MAPK and NF-${\kappa}B$ pathways.

Mouse mannose-binding lectin-A and ficolin-A inhibit lipopolysaccharide-mediated pro-inflammatory responses on mast cells

  • Ma, Ying Jie;Kang, Hee Jung;Kim, Ji Yeon;Garred, Peter;Lee, Myung-Shik;Lee, Bok Luel
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.376-381
    • /
    • 2013
  • It is unknown how soluble pattern-recognition receptors in blood, such as mannose-binding lectin (MBL) and ficolins, modulate mast cell-mediated inflammatory responses. We investigate how mouse MBL-A or ficolin-A regulate mouse bone marrow-derived mast cells (mBMMCs)-derived inflammatory response against bacterial lipopolysaccharide (LPS) stimulation. LPS-mediated pro-inflammatory cytokine productions on mBMMCs obtained from Toll-like receptor4 (TLR4)-deficient mice, TLR2-defficient mice, and their wildtype, were specifically attenuated by the addition of either mouse MBL-A or ficolin-A in a dose-dependent manner. However, the inhibitory effects by mouse MBL-A or ficolin-A were restored by the addition of mannose or N-acetylglucosamine, respectively. These results suggest that mouse MBL-A and ficolin-A bind to LPS via its carbohydrate-recognition domain and fibrinogen-like domain, respectively, whereby cytokine production by LPS-mediated TLR4 in mBMMCs appears to be down-regulated, indicating that mouse MBL and ficolin may have an inhibitory function toward mouse TLR4-mediated excessive inflammation on the mast cells.

Expression of Toll-like Receptors 2 and 4 and Immunoglobulins in Children wih Recurrent Otitis Media with Effusion

  • Cha, Chang-Il;Lee, Young-Chan;Park, Dong-Choon;Kim, Young-Il;Lee, Jin-Woo;Yeo, Seung-Geun
    • IMMUNE NETWORK
    • /
    • v.8 no.2
    • /
    • pp.59-65
    • /
    • 2008
  • Background: Toll-like receptors (TLRs) detect microbial infection and can directly induce innate host defense responses, which are thought to play critical roles in protecting the tubotympanum from infection. However, little is known about the relationship between TLRs, which are related to innate immunity, and immunoglobulins, which are related to adaptive immunity, in recurrent otitis media with effusion (OME). We therefore investigated the expression of TLR2 and TLR4 and immunoglobulin in children with OME. Methods: The study population consisted of 72 children with OME, 31 with more than 4 episodes in 12 months or more than 3 episodes in 6 months (otitis-prone group), and 41 with fewer than 3 episodes in 12 months (non-otitis prone group). The expression in middle ear effusion of TLR2 and TLR4 mRNA, as determined by Real time- -polymerase chain reaction (RT-PCR), and the concentrations of IgG, IgA, and IgM, as determined by Enzyme-linked immunosorbent assay(ELISA), were compared between the two groups. Results: Expression of TLR2 and TLR4 mRNA was lower in the otitis prone than in the non-otitis prone group, but the difference was not statistically significant (p>0.05). Between group differences in the concentrations of IgG, IgA and IgM in effusion fluid were not significant (p>0.05), and there were no correlations between immunoglobulin concentration and the expression of TLR2 and TLR4. Conclusion: Although there was a trend toward lower expression of TLR2 and TLR4 in the otitis-prone group, the differences, and those in immunoglobulin concentration, did not differ significantly between the otitis-prone and non-prone groups.

Comparison of inflammatory cytokine-inducing activity of lipopolysaccharides from major periodontal bacteria

  • Kim, So-Hee;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.160-164
    • /
    • 2019
  • Porphyromonas gingivalis (Pg), Aggregatibacter actinomycetemcomitans (Aa), Tannerella forsythia (Tf), Prevotella intermedia (Pi), and Fusobacterium nucleatum (Fn) are major periodontal pathogens. Lipopolysaccharides (LPSs) from periodontal bacteria play an important role in periodontal pathogenesis by stimulating host cells to produce inflammatory cytokines. In this study, highly pure LPSs from the five major periodontopathogens were prepared, and their monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α)-inducing activities were compared in human umbilical vein endothelial cells (HUVECs) and THP-1 macrophagic cells, respectively. In HUVECs, LPSs from Aa and Fn were potent stimulators for MCP-1 induction; however, LPSs from Pg, Pi, and Tf were much weaker MCP-1 inducers. In THP-1 cells, LPSs from Pg, Aa, and Fn were relatively strong inducers of TNF-α, whereas LPSs from Pi and Tf produced little activity. The Toll-like receptor (TLR)2/TLR4 dependency of various LPSs was also determined by measuring NF-κB reporter activity in TLR2- or TLR4-expressing 293 cells. LPSs from Aa, Fn, and Tf stimulated only TLR4; however, LPSs from Pg and Pi stimulated both TLR2 and TLR4. These results suggest that LPSs from major periodontal bacteria differ considerably in their cell-stimulating activity.

Suppression of the TRIF-dependent signaling pathway of toll-like receptors by (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate

  • Park, Se-Jeong;Park, Hye-Jeong;Kim, Soo-Jung;Shin, Hwa-Jeong;Min, In-Soon;Koh, Kwang-Oh;Kim, Dae-Young;Youn, Hyung-Sun
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.468-472
    • /
    • 2011
  • Toll-like receptors (TLRs) are pattern recognition receptors that recognize molecular structures derived from microbes and initiate innate immunity. TLRs have two downstream signaling pathways, the MyD88- and TRIF-dependent pathways. Dysregulated activation of TLRs is closely linked to increased risk of many chronic diseases. Previously, we synthesized fumaryl pyrrolidinone, (E)-isopropyl 4-oxo-4-(2-oxopyrrolidin-1-yl)-2-butenoate (IPOP), which contains a fumaric acid isopropyl ester and pyrrolidinone, and demonstrated that it inhibits the activation of nuclear factor kappa B by inhibiting the MyD88-dependent pathway of TLRs. However, the effect of IPOP on the TRIF-dependent pathway remains unknown. Here, we report the effect of IPOP on signal transduction via the TRIF-dependent pathway of TLRs. IPOP inhibited lipopolysaccharide- or polyinosinic-polycytidylic acidinduced interferon regulatory factor 3 activation, as well as interferon-inducible genes such as interferon inducible protein-10. These results suggest that IPOP can modulate the TRIF-dependent signaling pathway of TLRs, leading to decreased inflammatory gene expression.