• Title/Summary/Keyword: tolbutamide

Search Result 19, Processing Time 0.031 seconds

Involvement of Ca2+/Calmodulin Kinase II (CaMK II) in Genistein-Induced Potentiation of Leucine/Glutamine-Stimulated Insulin Secretion

  • Lee, Soo-Jin;Kim, Hyo-Eun;Choi, Sung-E;Shin, Ha-Chul;Kwag, Won-Jae;Lee, Byung-Kyu;Cho, Ki-Woong;Kang, Yup
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • Genistein has been reported to potentiate glucose-stimulated insulin secretion (GSIS). Inhibitory activity on tyrosine kinase or activation of protein kinase A (PKA) was shown to play a role in the genistein-induced potentiation effect on GSIS. The aim of the present study was to elucidate the mechanism of genistein-induced potentiation of insulin secretion. Genistein augmented insulin secretion in INS-1 cells stimulated by various energygenerating nutrients such as glucose, pyruvate, or leucine/glutamine (Leu/Gln), but not the secretion stimulated by depolarizing agents such as KCl and tolbutamide, or $Ca^{2+}$ channel opener Bay K8644. Genistein at a concentration of $50{\mu}M$ showed a maximum potentiation effect on Leu/Gln-stimulated insulin secretion, but this was not sufficient to inhibit the activity of tyrosine kinase. Inhibitor studies as well as immunoblotting analysis demonstrated that activation of PKA was little involved in genistein-induced potentiation of Leu/Gln-stimulated insulin secretion. On the other hand, all the inhibitors of $Ca^{2+}$/calmodulin kinase II tested, significantly diminished genistein-induced potentiation. Genistein also elevated the levels of $[Ca^{2+}]_i$ and phospho-CaMK II. Furthermore, genistein augmented Leu/Gln-stimulated insulin secretion in CaMK II-overexpressing INS-1 cells. These data suggest that the activation of CaMK II played a role in genistein-induced potentiation of insulin secretion.

Hypoglycemic Effect of Cordyceps militaris (큰번데기동충하초(Cordyceps militaris)의 혈당강하효과)

  • Kwon, Young-Min;Cho, Su-Min;Kim, Jee-Hun;Lee, Jae-Hee;Lee, Yeon-Ah;Lee, Seung-Jung;Lee, Min-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.4 s.127
    • /
    • pp.327-329
    • /
    • 2001
  • Cordyceps militaris (CM) has been used as a tonics in the traditional medicine. To investigate the anti-diabetic principle of CM, activity guided fractionation was conducted. Hot water extract of CM was fractionated into 3 parts: above 100,000(A), $100,000{\sim}20,000(B)$, below 20,000(C) in molecular weight using in membrane filter system. All fractions showed mild hypoglycemic activity in streptozotocin (STZ)-induced diabetic rats by oral administration (300 mg/kg). The fraction C which was most active among them was fractionated again into two parts, C-1 and C-2 by Sephadex LH 20 column chromatography. The fraction C-1 showed hypoglycemic activity but C-2 did not show activity compared with control in STZ mice. In glucose-fed hyperglycemic mice, fraction C, C-1 and C-2 also showed significant glucose lowering activity. Their decreasing rates of plasma glucose level after 1 hours administrations of fraction C, C-1 and C-2 were 24.5%, 29.3% and 22.0%, respectively (Tolbutamide: 48.4%). These results suggested that CM has both insulin like and insulin release promoting activity and could be developed as an antidiabetic agent.

  • PDF

A Portulaca oleracea L. extract promotes insulin secretion via a K+ATP channel dependent pathway in INS-1 pancreatic β-cells

  • Park, Jae Eun;Han, Ji Sook
    • Nutrition Research and Practice
    • /
    • v.12 no.3
    • /
    • pp.183-190
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: This study was designed to investigate how a Portulaca oleracea L. extract (POE) stimulates insulin secretion in INS-1 pancreatic ${\beta}-cells$. MATERIALS/METHOD: INS-1 pancreatic ${\beta}-cells$ were incubated in the presence of various glucose concentrations: 1.1 or 5.6, 16.7 mM glucose. The cells were treated with insulin secretagogues or insulin secretion inhibitor for insulin secretion assay using an insulin ELISA kit. In order to quantify intracellular influx of $Ca^{2+}$ caused by POE treatment, the effect of POE on intracellular $Ca^{2+}$ in INS-1 pancreatic ${\beta}-cells$ was examined using Fluo-2 AM dye. RESULTS: POE at 10 to $200{\mu}g/mL$ significantly increased insulin secretion dose-dependently as compared to the control. Experiments at three glucose concentrations (1.1, 5.6, and 16.7 mM) confirmed that POE significantly stimulated insulin secretion on its own as well as in a glucose-dependent manner. POE also exerted synergistic effects on insulin secretion with secretagogues, such as L-alanine, 3-isobutyl-1-methylxanthine, and especially tolbutamide, and at a depolarizing concentration of KCl. The insulin secretion caused by POE was significantly attenuated by treatment with diazoxide, an opener of the $K{^+}_{ATP}$ channel (blocking insulin secretion) and by verapamil (a $Ca^{2+}$ channel blocker). The insulinotropic effect of POE was not observed under $Ca^{2+}$-free conditions in INS-1 pancreatic ${\beta}-cells$. When the cells were preincubated with a $Ca^{2+}$ fluorescent dye, Fluo-2 (acetoxymethyl ester), the cells treated with POE showed changes in fluorescence in red, green, and blue tones, indicating a significant increase in intracellular $Ca^{2+}$, which closely correlated with increases in the levels of insulin secretion. CONCLUSIONS: These findings indicate that POE stimulates insulin secretion via a $K{^+}_{ATP}$ channel-dependent pathway in INS-1 pancreatic ${\beta}-cells$.

DC23, a Triazolothione Resorcinol Analogue, Is Extensively Metabolized to Glucuronide Conjugates in Human Liver Microsomes

  • Shon, Jong Cheol;Joo, Jeongmin;Lee, Taeho;Kim, Nam Doo;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2018
  • DC23, a triazolothione resorcinol analogue, is known to inhibit heat shock protein 90 and pyruvate dehydrogenase kinase which are up-regulated in cancer and diabetes, respectively. This study was performed to elucidate the metabolism of DC23 in human liver microsomes (HLMs). HLMs incubated with DC23 in the presence of uridine 5'-diphosphoglucuronic acid (UDPGA) and/or ${\beta}$-nicotinamide adenine dinucleotide phosphate (NADPH) resulted in the formation of four metabolites, M1-M4. M1 was identified as DC23-N-Oxide, on the basis of LC-MS/MS analysis. DC23 was further metabolized to its glucuronide conjugates (M2, M3, and M4). In vitro metabolic stability studies conducted with DC23 in HLMs revealed significant glucuronide conjugation with a $t_{1/2}$ value of 1.3 min. The inhibitory potency of DC23 on five human cytochrome P450s was also investigated in HLMs. In these experiments, DC23 inhibited CYP2C9-mediated tolbutamide hydroxylase activity with an $IC_{50}$ value of $8.7{\mu}M$, which could have implications for drug interactions.

Effects of $K^+$ Channel Modulators on Extracellular $K^+$ Accumulation during Ischemia in the Rat Hippocampal Slice (해마절편의 허혈성 $K^+$ 축적에 대한 $K^+$채널 조절 약물의 작용)

  • Choi, Jin-Kyu;Chun, Boe-Gwun;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.681-690
    • /
    • 1997
  • Loss of synaptic transmission and accumulation of extracellular $K^+([K^+]_O)$ are the key features in ischemic brain damage. Here, we examined the effects of several $K^+$channel modulators on the early ischemic changes in population spike (PS) and $[K^+]_o$ in the CA1 pyramidal layer of the rat hippocampal slice using electrophysiological techniques. After onset of anoxic aglycemia (AA), orthodromic field potentials decreased and disappeared in $3.3{\pm}0.22\;min$ $(mean{\pm}SEM,\;n=40)$. The hypoxic injury potential (HIP), a transient recovery of PS appeared at $6.0{\pm}0.25\;min$ (n=40) in most slices during AA and lasted for $3.3{\pm}0.43\;min$. $[K^+]_o$ increased initially at a rate of 0.43 mM/min (Phase 1) and later at a much faster rate (12.45 mM/min, Phase 2). The beginning of Phase 2 was invariably coincided with the disappearance of HIP. Among $K^+$ channel modulators tested such as 4-aminopyridine (0.03, 0.3 mM), tetraethylammonium (0.1 mM), NS1619 $(0.3{\sim}10\;{\mu}M)$, niflumic acid (0.1 mM), glibenclamide $(40\;{\mu}M)$, tolbutamide $(300\;{\mu}M)$ and pinacidil $(100\;{\mu}M)$, only 4-aminopyridine (0.3 mM) induced slight increase of $[K^+]_o$ during Phase 1. However, none of the above agents modulated the pattern of Phase 2 in $[K^+]_o$ in response to AA. Taken together, the experimental data suggest that 4-aminopyridine-sensitive $K^+$channels, large conductance $Ca^{2+}-activated$ $K^+$ channels and ATP-sensitive $K^+$ channels may not be the major contributors to the sudden increase of $[K^+]_o$ during the early stage of brain ischemia, suggesting the presence of other routes of $K^+$ efflux during brain ischemia.

  • PDF

Validation of an HPLC Method for the Pharmacokinetic Study of Glipizide in Human (글리피짓 체내동태 연구를 위한 혈청 중 글리피짓의 HPLC 정량법 검증)

  • Cho, Hea-Young;Lee, Hwa-Jeong;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.137-142
    • /
    • 2005
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of glipizide in human serum was validated and applied to the pharmacokinetic study of glipizide. Glipizide and internal standard, tolbutamide, were extracted from human serum by liquid-liquid extraction with benzene and analyzed on a Nova Pak $C_{18}\;60{\AA}$ column with the mobile phase of acetonitrile-potassium dihydrogen phosphate (10 mM, pH 3.5) (4:6, v/v). Detection wavelength of 275 nm and flow rate of 0.7 ml/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^3$ factorial design using a fixed glipizide concentration (500 ng/ ml) with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of 10-1000 ng/ml with correlation coefficient greater than 0.999. The lower limit of quantitation using 0.5 ml of serum was 10.0 ng/ml, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 82.6 to 105.0% for glipizide with overall precision (% C.V.) being 1.13-13.20%. The percent recovery for human serum was in the range of 85.2 93.5%. Stability studies showed that glipizide was stable during storage, or during the assay procedure in human serum. The peak area and retention time of glipizide were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of glipizide in human serum samples for the pharmacokinetic studies at three different laboratories, demonstrating the suitability of the method.

Effects of potassium channel modulators on the fatigue velocity of mouse skeletal muscle (K+ 통로 조절 약물이 마우스 골격근의 피로현상에 미치는 영향)

  • Lee, Ki-ho;Ryu, Pan-dong;Lee, Mun-han;Lee, Hang
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.245-254
    • /
    • 1995
  • The density of ATP-sensitive potassium($K_{APT}$) channels, that open as intracellular ATP concentration falls below a critical level, is very high in skeletal muscle surface membrane and those high density may imply that $K_{ATP}$ channels have very important physiological roles. To elucidate a role of $K_{ATP}$ in relation to fatigue, the modulating effects of potassium channel openers and blockers on the fatigue velocity(FV) of mouse extensor hallucis longus muscle(EHL) were investigated in vitro. Twitch contraction was induced by an electrical field stimulation (EFS: 24-48V, 20ms, 0.2-4Hz) and resulting contraction force was isometrically recorded. The twitch forces were gradually decreased to 25% of initial contraction force(ICF) in $37.52{\pm}1.55sec$($mean{\pm}s.e.m.$, n=135), indicating the fatigue phenomena. The mean velocity for development of the fatigue was measured during the period that twitch force decreased to half($FV_{0/0.5}$) and during the period from half to 25%($FV_{0.5/0.25}$) of ICF. The fatigue was induced once every one hour and the tissue response was stable for up to 4 hours. In control condition, ICF was $5.8{\pm}0.12g$ (n=144) and decreased to 50% of ICF with the mean fatigue velocity of $0.182{\pm}0.006g/sec$($FV_{0/0.5}$, n=135) and from 50% to 25% of ICF with $0.084{\pm}0.004g/sec$($FV_{0.5/0.25}$, n=135). Cromakalim($50{\mu}M$) significantly increased $FV_{0.5/0.25}$(n=4). Glibenclamide($IC_{50}>50{\mu}M$), $Ba^{2+}$($IC_{50}=10{\mu}M$), 4-aminopyridine($FV_{0/0.5}$, $IC_{50}=0.5mM$; $FV_{0.5/0.25}$, $IC_{50}=2mM$) decreased both $FV_{0/0.5}$ and $FV_{0.5/0.25}$ concentration-dependently up to 75%. $TEA^+$(30mM), E-4031($10{\mu}M$), tolbutamide(1mM) decreased $FV_{0.5/0.25}$, but apamin(300nM) and $TEA^+$(10mM) showed no significant effects. Our results suggest that activation of the $K_{ATP}$ channels may be major cause of $K^+$ outflux during development of the fatigue and the isolated EHL muscle could be an useful experimental preparation in studying the fatigue phenomena in skeletal muscle. In addition, the possibility of activation of delayed rectifier during the fatigue development remains to be studied further.

  • PDF

Determination of 11 Illicit Compounds in Dietary Supplements Using High-Performance Liquid Chromatography and Liquid Chromatography-Tandem Mass Spectrometry

  • Shin, Dasom;Kang, Hui-Seung;Kim, Hyung-soo;Moon, Guiim
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.326-333
    • /
    • 2020
  • In this work, we developed an analytical method for determining 11 illicit compounds in dietary supplements using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. Eleven target compounds, including those meant for weight loss (7-keto-dihydroepiandrosterone, buformin, metformin, phenformin, salbutamol, and tolbutamide), sexual enhancement (dihydroepiandrosterone), and relaxation (asarone, kavain, magnoflorine, and picamilon) were screened and confirmed in dietary supplements. Method validation was performed by evaluating the selectivity, linearity, limit of quantification (LOQ), accuracy, and precision according to the Association of Official Analytical Chemists guidelines. The linearity was > 0.993 for all analytes. The LOQs were ranged in 2.1-9.9 ㎍/mL (HPLC-DAD) and 0.002-0.008 ㎍/mL (LC-MS/MS). The accuracies (expressed as recovery) were 90.0-106% (HPLC-DAD) and 83.0-114% (LC-MS/MS). The precision (expressed as the relative standard deviation) was below 10% using HPLC and LC-MS/MS. The proposed method can be used for the surveillance of illicit compounds in dietary supplements.

Screening for inhibitory effect on nine CYP isoforms by 20 herbal medications (고속 스크리닝 기법을 이용한 한약제제의 cytochrome P45O 저해능 탐색)

  • Kim, Hyun-Mi;Liu, Kwang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.334-339
    • /
    • 2007
  • We evaluated the potential of 20 herbal medications (HMs), commonly used in Korea, to inhibit the catalytic activities of several cytochrome P450 (CYP) isoforms. The abilities of 500 ${\mu}g/ml$ of aqueous extracts of 20 HMs to inhibit phenacetin O-deethylation (CYP1A2), coumarin 6-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), rosiglitazone hydroxylation (CYP2C8), tolbutamide 4-methylhydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and midazolam 1'-hydroxylation (CYP3A) were tested using human liver microsomes. The HMs Woohwangcheongsimwon suspension and Hwanglyeonhaedok-Tang strongly inhibited CYP2B6 and CYP2D6 isoform activity, respectively. These results suggest that some of the HMs used in Korea have potential to inhibit CYP isoforms in vitro. Although the plasma concentrations of the active constituents of the HMs were not determined, some herbs could cause clinically significant interactions because the usual doses of those individual herbs are several grams of freeze-dried extracts.