토큰화는 입력 텍스트를 더 작은 단위의 텍스트로 분절하는 과정으로 주로 기계 학습 과정의 효율화를 위해 수행되는 전처리 작업이다. 현재까지 자연어 처리 분야 과업에 적용하기 위해 다양한 토큰화 방법이 제안되어 왔으나, 주로 텍스트를 효율적으로 분절하는데 초점을 맞춘 연구만이 이루어져 왔을 뿐, 한국어 데이터를 대상으로 최신 기계 학습 기법을 적용하고자 할 때 적합한 토큰화 방법이 무엇일지 탐구 해보기 위한 연구는 거의 이루어지지 않았다. 본 논문에서는 한국어 데이터를 대상으로 최신 기계 학습 기법인 전이 학습 기반의 자연어 처리 방법론을 적용하는데 있어 가장 적합한 토큰화 방법이 무엇인지 알아보기 위한 탐구 연구를 진행했다. 실험을 위해서는 대표적인 전이 학습 모형이면서 가장 좋은 성능을 보이고 있는 모형인 BERT를 이용했으며, 최종 성능 비교를 위해 토큰화 방법에 따라 성능이 크게 좌우되는 과업 중 하나인 기계 독해 과업을 채택했다. 비교 실험을 위한 토큰화 방법으로는 통상적으로 사용되는 음절, 어절, 형태소 단위뿐만 아니라 최근 각광을 받고 있는 토큰화 방식인 Byte Pair Encoding (BPE)를 채택했으며, 이와 더불어 새로운 토큰화 방법인 형태소 분절 단위 위에 BPE를 적용하는 혼합 토큰화 방법을 제안 한 뒤 성능 비교를 실시했다. 실험 결과, 어휘집 축소 효과 및 언어 모델의 퍼플렉시티 관점에서는 음절 단위 토큰화가 우수한 성능을 보였으나, 토큰 자체의 의미 내포 능력이 중요한 기계 독해 과업의 경우 형태소 단위의 토큰화가 우수한 성능을 보임을 확인할 수 있었다. 또한, BPE 토큰화가 종합적으로 우수한 성능을 보이는 가운데, 본 연구에서 새로이 제안한 형태소 분절과 BPE를 동시에 이용하는 혼합 토큰화 방법이 가장 우수한 성능을 보임을 확인할 수 있었다.
국어의 경우 교착어이기 때문에 영어와 같이 어절 토큰화를 통하여 태깅할 경우 발전 가능성이 영어 보다 낮은 편이다. KoNLPy를 통해 형태소 단위로 분리하여 코퍼스를 토큰화한 형태를 그래프 데이터 베이스로 표현이 되지만 해당 모듈을 그래프 데이터베이스에서 코퍼스로 변환 시 음성파일의 완전 분리 및 실용성에 대한 검증이 필요하다. 본 논문에서는 Raspberry Pi에서 STT API를 활용한 형태소 표현을 나타내고 있다. 코퍼스로 변환된 음성 파일을 KoNLPy로 형태소 분석 후 태깅한다. 분석된 결과는 그래프 데이터베이스로 표현되며 형태소별로 나누어진 토큰으로 구분할 수 있음이 확인되었고, 실용성과 분리 정도를 판단하여 특정 목적성을 지닌 데이터 마이닝 추출이 가능한 것으로 판단된다.
The aim of this study was to analyze contemporary sociocultural phenomena and values through characteristics of augmented reality (AR) digital fashion design. The research method included a literature review on the metaverse and augmented reality, combined with a case study using both quantitative analysis through big data text mining and qualitative analysis through constant comparison. Data analysis was conducted using Python-based open-source tools: First, 6,725 data entries were collected from AR digital fashion platforms and brands identified in articles from Vogue and Vogue Business containing keywords of 'augmented reality' and 'digital fashion. Second, text preprocessing involved stop word removal, tokenization, and POS-tagging of nouns and adjectives using the NLTK library. Third, top 50 keywords were extracted through term frequency (TF) and TF-IDF analysis, with results visualized using a word cloud. Fourth, characteristics of products' external design and internal concepts that contained top keywords were classified, with their value examined through repeated comparison. Results indicate that AR digital fashion design has the following characteristics. First, it embodies surreal fantasy through designs that mimic natural biological patterns using 3D scanning and modeling technology. Second, it presents a trans-boundary aspect by utilizing the fluidity of body and space to challenge vertical and discriminatory social structures. Third, it imagines a new future transcending traditional sociocultural concepts by expanding perceptions of space and time based on advanced technological aesthetics. Fourth, it contributes to sustainability by exploring alternatives for the fashion industry in response to climate change and ecological concerns.
효과적인 분절을 통한 양질의 입력 자질 구성은 언어모델의 문장 이해력을 향상하기 위한 필수적인 단계이다. 입력 자질의 품질 제고는 세부 태스크의 성능과 직결된다. 본 논문은 단어와 문장 분류 관점에서 한국어의 언어적 특징을 효과적으로 반영하는 분절 전략을 비교 연구한다. 분절 유형은 언어학적 단위에 따라 어절, 형태소, 음절, 자모 네 가지로 분류하며, RoBERTa 모델 구조를 활용하여 사전학습을 진행한다. 각 세부 태스크를 분류 단위에 따라 문장 분류 그룹과 단어 분류 그룹으로 구분 지어 실험함으로써, 그룹 내 경향성 및 그룹 간 차이에 대한 분석을 진행한다. 실험 결과에 따르면, 문장 분류에서는 단위의 언어학적 분절 전략을 적용한 모델이 타 분절 전략 대비 최대 NSMC: +0.62%, KorNLI: +2.38%, KorSTS: +2.41% 높은 성능을, 단어 분류에서는 음절 단위의 분절 전략이 최대 NER: +0.7%, SRL: +0.61% 높은 성능을 보임으로써, 각 분류 그룹에서의 효과성을 보여준다.
이 연구의 목적은 지방자치단체에서 사용하고 있는 단위과제 현황, 단위과제 운영 및 기록관리 관점의 문제점을 조사 및 분석하여 그 과정에서 도출된 시사점들을 기반으로 텍스트 기반 빅데이터 기술을 활용하여 문제점에 대한 개선방안을 제시하는 것이다. 지방자치단체는 단위과제의 오분류로 인한 보존기간 책정 오류, 과공통사무와 기관공통사무의 유형식별 불가, 단위과제의 과대·과소·중복생성의 오류, 단위과제 명칭의 오류, 참고 가능한 표준의 부재, 통제 가능한 시스템 또는 도구의 부재 등으로 인해 기록관리 운영상 심각한 상태에 놓여 있다. 그러나 단위과제의 수가 약 72만개로 지나치게 많은 수량 때문에 효과적으로 통제할 수 없는 실정이며, 따라서 엄밀하고 통제할 수 있는 도구 및 표준이 필요하다. 본 연구에서는 이와 같은 문제점을 해결하기 위하여 빅데이터 분석 기술 중 텍스트기반 분석 도구인 코퍼스와 토큰화 기술을 적용한 시스템을 개발하고, 이를 기록관리기준표를 구성하고 있는 명칭 및 구성용어에 적용하였다. 이러한 단위과제 운영 지원도구는 통일성 있는 보존 기간 책정, 위임사무 기록물 식별, 중복·유사단위과제 생성 통제, 공통 과제의 표준적인 운영 등을 지원할 수 있는 도구가 될 수 있어 기록관리 업무에 상당한 기여를 할 수 있을 것으로 예상된다. 따라서 향후 빅데이터 분석 방법론을 활용한 지원도구가 BRM 및 RMS 등과 연계할 수 있다면 기록관리기준표 관리 업무의 품질이 높아질 수 있을 것으로 보인다.
대체 불가능 토큰 (NFT: non-fungible Token)은 분할할 수 없다는 고유한 특징을 가지고 있다. 현재 NFT는 디지털 콘텐츠에 대한 소유권 증명 이상의 용도가 명확하지 않고, 토큰의 유동성이 거의 없으며, 이로 인한 가격의 예측이 어렵다. 현실에서의 부동산은 대개 가격이 매우 높은 특징으로 인해 투자 진입장벽이 매우 높다. 현물 부동산을 NFT 화하고, FT (fungible token)으로 분할하면 유동성의 증가, 접근성의 증가에 따른 투자자 커뮤니티 볼륨의 증가를 기대할 수 있다. 본 논문은 일반 투자자들이 개별적으로 구매하기 어려운 현물 부동산을 대량의 FT로 분할하고 이를 Black Litterman 모델 기반의 Portfolio 투자 인터페이스를 통해 투자할 수 있는 시스템을 설계하고 구현하였다. 이를 위해, 현물 부동산을 담보로 페깅하고, 보안적으로 안전한 블록체인인 NFT로 발행한다. 상시 변경되는 부동산 가격을 모니터링하기 위한 오라클을 사용하여, 외부 부동산 정보를 블록체인에 반영할 수 있도록 하였다. 현물 부동산 가격을 그대로 유지하고 있는 NFT를 낮은 가격의 대량 FT로 분할함으로써, 큰 유동성을 제공하고 가격 변동성 제한을 두었다. 이를 통해, 높은 가격으로 인해 투자하기 어려웠던 일반 소액 투자자들이 쉽게 투자할 수 있도록 하였다. 또한 소액 투자로 여러 개의 복수 현물 부동산에 투자하기 위한 효과적인 포트폴리오 구성을 위한 자산 포트폴리오 인터페이스를 구현하였다. 이는 Black Litterman 모델을 활용하여, 다수의 현물 부동산 NFT에 대한 투자 비율을 최적화할 수 있는 목적을 가진다. 전체 시스템은 Solidity 언어로 작성한 smart contract, Flask 웹 프레임워크, 공공데이터포털의 "국토교통부_아파트매매 실거래자료 Open API"를 활용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.