• 제목/요약/키워드: tobacco glutamate decarboxylase

검색결과 5건 처리시간 0.015초

담배 배양 세포의 성장과정 중 칼슘/칼모듈린-결합단백질 및 glutamate decarboxylase의 생성변화 (Changes in the levels of $Ca^{2+}$/calmodulin - binding proteins and glutamate decarboxylase during the growth of tobacco suspension cells)

  • 한광수;오석흥
    • Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.231-235
    • /
    • 2000
  • 담배 배양 세포의 성장과정 중의 칼모듈린 농도변화 및 칼모듈린 결합 단백질의 종류에 대하여 조사하고 이들 단백질들 중 글루탐산 탈탄산효소를 immunodetection과 활성측정으로 확인하였다. 담배세포는 유도기(초기 $1{\sim}2$일간), 대수증식기($3{\sim}5$일), 정지기 등의 전형적인 성장 패턴을 보였다. 칼모듈린의 농도는 비록 대수증식기에 약간 감소하는 경향을 보이다 정지기에 이르면서 유도기의 수준을 회복하는 것으로 나타났지만 전체적으로는 성장단계에 관계없이 유사한 수준을 유지하는 것으로 나타났다. 주요 칼슘-의존형 칼모듈린 결합단백질은 56, 46, 36, 32-kDa의 4종류인 것으로 조사되었고, 모노클로날 항체를 이용하여 immunodetection을 실시해 본 결과 56-kDa 단백질이 담배 글루탐산 탈탄산효소로 확인되었다. 56-kDa의 글루탐산 탈탄산효소는 대수증식기에 수확한 세포에서 가장 많이 검출되었고, 이와같은 패턴은 효소활성 측정에서도 확인되었다. 이러한 결과들은 담배세포의 성장과정 중에 칼슘/칼모듈린-의존형 글루탐산 탈탄산효소 농도가 조절되고 있음을 제안해 주는 것이다.

  • PDF

Regulation of γ-Aminobutyric Acid Production in Tobacco Plants by Expressing a Mutant Calmodulin Gene

  • Oh, Suk-Heung;Cha, Youn-Soo
    • Journal of Applied Biological Chemistry
    • /
    • 제43권2호
    • /
    • pp.69-73
    • /
    • 2000
  • In order to understand the biological role of calmodulin in plants, transgenic plants expressing a mutant calmodulin (VU-4, Iys to ile-115) have been analyzed. We found that tobacco plants expressing VU-4 calmodulin have approximately twofold higher $\gamma$-aminobutyric acid (GABA) levels than the control plants. Cell suspension cultures established from the stem explants of the transgenic tobacco seedlings also have higher levels of GABA than the control cell cultures. Specific activity of glutamate decarboxylase (GAD), which catalyzes the decarboxylation of glutamate to $CO_2$ and GABA, of the transgenic tobacco cell extracts was about twofold higher than the activity of the control cell extracts. Western-blot analysis showed that the GAD is highly expressed in the transgenic tobacco plants. GAD partially purified from tobacco cell extracts showed approximately threefold $Ca^{2+}$/calmodulin-dependent activation. These data suggest that GABA synthesis in the transgenic tobacco plants is elevated, possibly due to higher levels of the calmodulin-dependent GAD enzyme and/or as a result of enhanced activation due to increased levels of the foreign calmodulin.

  • PDF

Effects of Various Calmodulins on the Activation of Glutamate Decarboxylase and Nicotinamide Adenine Dinucleotide Kinase Isolated from Tobacco Plants

  • Oh, Suk-Heung;Yun, Song Joong
    • Journal of Applied Biological Chemistry
    • /
    • 제42권1호
    • /
    • pp.19-24
    • /
    • 1999
  • Plants have been shown to contains $Ca^{2+}$/calmodulin-stimulated GAD and NAD kinase. To test how calmodulin and calmodulin methylation affect the activation of GAD and NAD kinase, GAD and NAD kinase were partially purified from tobacco plants. GAD was also partially purified from E. coli transformed with a plasmid carrying a cloned tobacco GAD gene. We find that GAD from the transformed E. coli showed 60-fold $Ca^{2+}$/calmodulin-dependent activation. However, GAD from tobacco plants was stimulated only about 3.8-fold by the addition of calmodulin in the presence of calcium, suggesting high background activity of the enzyme was possibly due to bound endogenous tobacco calmodulin. There were no significant differences in the tobacco GAD activator properties between calmodulins. A monoclonal antibody against petunia GAD interacted strongly with both GAD from tobacco plants and GAD from cloned gene. NAD kinase from tobacco plants showed a complete $Ca^{2+}$/calmodulin dependency for activity. Unmethylated calmodulins activated GAD in a manner similar to methylated calmodulin. However, the maximum level of NAD kinase activation obtained with unmethylated calmodulins is approximately 4-fold higher than methylated calmodutins. These data suggested that endogenous tobacco calmodulin may interact more tightly with GAD than NAD kinase and that calmodulin methylation affects the activator properties of calmodulins for tobacco NAD kinase but not for GAD.

  • PDF

Stimulatory Effects of Ginsenosides on Bovine Brain Glutamate Decarboxylase

  • Choi, Soo-Young;Bahn, Jae-Hoon;Jeon, Seong-Gyu;Chung, Young-Mee;Hong, Joung-Woo;Ahn, Jee-Yin;Hwang, Eun-Joo;Cho, Sung-Woo;Park, Jin-Kyu;Baek, Nam-In
    • BMB Reports
    • /
    • 제31권3호
    • /
    • pp.233-239
    • /
    • 1998
  • A GABA synthesizing enzyme, glutamate decarboxylase, has been purified from bovine brain by several chromatographic procedures. The preparation appeared homogeneous on SDS-PAGE. The enzyme is a homodimeric protein with a molecular mass of 120 kDa. The activation of glutamate decarboxylase by ginesenosides from Panax ginseng C.A. Meyer has been studied. Preincubation of the enzyme with total ginsenoside, $Rb_2$ and Rc ginsenosides, increased glutamate decarboxylase activities in a dose-dependent manner. There was a reproducible decrease in $K_m$, in addition to a increase in $V_{max}$, in response to increasing concentrations of the Rc ginsenoside fraction. Upon addition of the ginsenoside to the enzyme, a decrease in flurorescence intensity was discernible, together with an increase in emission anisotropy. Judging from the anisotropy values, the ginsenoside is rapidly trapped by the protein matrix. Total ginsenoside was administered to rats and the rat brains were removed for the measurement of the changes of GABA shunt regulating enzyme activities. Among the GABA shunt regulating enzymes, only the glutamate decarboxylase activities were increased after ginsenoside treatment. Therefore, it is suggested that the ginsenosides may elevate the GABA level in brain by activation of glutamate decarboxylase and the enzymatic activation might be due to the conformational change induced by binding of ginsenoside to the enzyme.

  • PDF