• Title/Summary/Keyword: titration method

Search Result 258, Processing Time 0.028 seconds

Effect of thyroparathyroidectomy on urinary excretion of sodium, potassium, calcium and phosphate in the rabbits (갑상선 부갑상선 적출이 뇨중 Na, K, Ca 및 $PO_4$ 배설에 미치는 영향)

  • Choi, Duck-Kyung
    • The Korean Journal of Physiology
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 1982
  • The effect of parathyroid hormone on calcium and phosphate metabolism have been widely investigated, however less attention has been paid to the effect on urinary excretion. This study was performed for the purpose determining urinary excretion of Na, K, Ca, and $Po_4$, of 18 thyroparathyroidectomized (TPTX) rabbits, which were TPTX previously 7 to 10 days compared with the same normal ones. After TPTX 0.2 mg/day of synthyroid was donated to the rabbits. The concentration of electrolytes in the serum and urine was determined by the following method; Na and K were determined by means of flame photometry, Ca was by EDTA titration $method^{19)}$, and $Po_4$ by Fiske and Subba-Raw $method^{20)}$. The results as follows. The concentrations of electrolytes in the serum were 1) In the normal control rabbits (N = 25) (data, $Mean{\pm}S.E.$) $Na\;131.72{\pm}1.33\;mEq/L$, $K\;3.59{\pm}0.28\;mEq/L$, $Ca\;12.58{\pm}0.29\;mg%$, $Po_4\;4.50{\pm}\;0.45mg%$. 2) In the TPTX rabbits(N= 18) $Na\;140.6l{\pm}2.56\;mEq/L$, $K\;3.38{\pm}0.36\;mEq/L$, $Ca\;l2.18{\pm}0.45\;mg%$, $Po_4\;3.92{\pm}\;0.35\;mg%$. There was no significant change between the normal and TPTX rabbits. The concentration of elelctrolytes in the urine were variously changed. 3) In the normal rabbits. $Na\;8.40{\pm}1.09\;mEq/L$, $K\;81.59{\pm}10.19\;mEq/L$, $Ca\;16.02{\pm}3.12\;mg%$, $Po_4\;13.16{\pm}2.89mg%$. 4) In the TPTX rabbits, $Na\;14.57{\pm}3.39\;mEq/L$ slight ncreased, $K\;116.06{\pm}12.77\;mEq/L$ significant increased (P<0.05), $Ca\;18.90{\pm}5.44\;mg%$ no significant increased, $Po_4\;43.38{\pm}8.67\;mg%$ significant increased (p<0.01). The effect of TPTX was assumed that it affected upon increasing tubular secretion of $K^+$ and inhibition of the tubular reabsorption of $Po_4$.

  • PDF

Quantifying Chloride Ingress in Cracked Concrete Using Image Processing (이미지 분석을 이용한 균열 콘크리트 내 염화물 침투 정량화 평가)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • Chloride, which is one of the main deterioration factors in reinforced concrete structures, can degrade the performance of the structure due to chloride-induced corrosion of steel. Chloride content at steel depth or the rate of chloride penetration is necessary to determine deterioration of reinforced concrete or to calculate initiation time of steel corrosion caused by chloride attack. Chlorides in concrete are generally identified with typical two methods including chloride profiling using potentiometric titration method and discoloration method using AgNO3 solution. The former is advantageous to estimate chloride penetration rate (diffusion coefficient in general) with measured chloride contents directly, but it is laborious. In the case of latter, while the result is obtained easily with the range of discoloration, the error may occur depending on workmanship when the depth of chloride ingress is measured. This study shows that chloride penetrated depth is evaluated with the results obtained from discoloration method through image analysis, thereby the error is minimized by workmanship. In addition, the effect of micro-crack in concrete is studied on chloride penetration. In conclusion, the depth of chloride penetration was quantified with image analysis and as it was confirmed that chlorides can rapidly penetrate through micro-cracks, caution is especially required for cracks in concrete structure.

Characterization of Humic and Fulvic Acids Extracted from Soils in Different Depth: Proton Exchange Capacity, Elemental Composition and 13C NMR Spectrum (깊이별 토양 휴믹산과 풀빅산의 특성 분석: 양성자교환용량, 원소성분비, 13C NMR 스펙트럼)

  • Shin, Hyun-Sang;Lee, Chang-Hoon;Rhee, Dong-Sock;Chung, Kun-Ho;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.283-291
    • /
    • 2003
  • Humic and fulvic acids present in soils of different depth were extracted and their acidic functional groups and structural characteristics were analyzed and compared. The purpose of this study was to present a basic data needed to evaluate the effect of humic substances on depth distribution and migrational behaviour of radioactive elements deposited on soil. Acidic functional groups of the humic and fulvic acids were analyzed by pH titration method, and their proton exchange capacity (PEC, $mq\;g^{-1}$) and average $pK_a$ values were obtained. Structural characteristics of the humic and fulvic acids were analyzed using their CPMAS $^{13}C$ NMR spectra and elemental composition data. pH titration data showed that fulvic acids have higher acidic functional group contents ranging from 5.5 to $7.0meq\;g^{-1}$ compared with that of humic acids ($3.8{\sim}4.8meq\;g^{-1}$). From depth profiles, it has been found that PEC values of humic acids in deeper soil (> 8 cm) were higher than those at the surface soils. Elemental compositions (H/C ratio) and spectral features ($C_{arom}/C_{aliph}$ ratio) obtained from CPMAS $^{13}C$ NMR spectra showed that the aromatic character in humic acids was a relatively higher than that of fulvic acids, while lower in carboxyl carbon content. The aromatic character and carboxyl carbon contents of humic acids tend to increase as soil depth increased, but those of fulvic acid showed little differences by the soil depth range.

A Comparison Study of Alkalinity and Total Carbon Measurements in $CO_2$-rich Water (탄산수의 알칼리도 및 총 탄소 측정방법 비교 연구)

  • Jo, Min-Ki;Chae, Gi-Tak;Koh, Dong-Chan;Yu, Yong-Jae;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Alkalinity and total carbon contents were measured by acid neutralizing titration (ANT), back titration (BT), gravitational weighing (GW), non-dispersive infrared-total carbon (NDIR-TC) methods for assessing precision and accuracy of alkalinity and total carbon concentration in $CO_2$-rich water. Artificial $CO_2$-rich water(ACW: pH 6.3, alkalinity 68.8 meq/L, $HCO_3^-$ 2,235 mg/L) was used for comparing the measurements. When alkalinity measured in 0 hr, percent errors of all measurement were 0~12% and coefficient of variation were less than 4%. As the result of post-hoc analysis after repeated measure analysis of variance (RM-AMOVA), the differences between the pair of methods were not significant (within confidence level of 95%), which indicates that the alkalinity measured by any method could be accurate and precise when it measured just in time of sampling. In addition, alkalinity measured by ANT and NDIR-TC were not change after 24 and 48 hours open to atmosphere, which can be explained by conservative nature of alkalinity although $CO_2$ degas from ACW. On the other hand, alkalinity measured by BT and GW increased after 24 and 48 hours open to atmosphere, which was caused by relatively high concentration of measured total carbon and increasing pH. The comparison between geochemical modeling of $CO_2$ degassing and observed data showed that pH of observed ACW was higher than calculated pH. This can be happen when degassed $CO_2$ does not come out from the solution and/or exist in solution as $CO_{2(g)}$ bubble. In that case, $CO_{2(g)}$ bubble doesn't affect the pH and alkalinity. Thus alkalinity measured by ANT and NDIR-TC could not detect the $CO_2$ bubble although measured alkalinity was similar to the calculated alkalinity. Moreover, total carbon measured by ANT and NDIR-TC could be underestimated. Consequently, it is necessary to compare the alkalinity and total carbon data from various kind of methods and interpret very carefully. This study provide technical information of measurement of dissolve $CO_2$ from $CO_2$-rich water which could be natural analogue of geologic sequestration of $CO_2$.

Quantification of Bowman-Birk Protease Inhibitors in Soybeans and Soybean Products by Competitive Enzyme-Linked Immunosorbent Assay (경합 Enzyme-Linked Immunosorbent Assay에 의한 대두 및 대두가공제품 중의 Bowman-Birk Protease Inhibitors의 함량 분석)

  • Kim, Sung-Ran;Shon, Dong-Hwa;Kim, Su-Il;Hong, Hee-Do
    • Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.310-316
    • /
    • 1999
  • BBPI contents in domestic soybean and soybean products were investigated by the measurement of chymotrypsin inhibiting activity(C.I.A) and competitive ELISA method. In order to produce polyclonal antibody, BBPI was purified from soybean trypsin-chymotrypsin inhibitor by ion exchange chromatography and electrophoretic gel slicing. Rabbit anti-BBPI polyclonal antibody was produced with the purified BBPI as immunogen. This antibody showed relatively specific binding to BBPI and then used for the establishment of competitive ELISA method to measure BBPI contents in extracts of soybean and soybean products. The standard curve for the measurement of BBPI in soybean extracts was drawn up within the range 0.03 to $30\;{\mu}g/ml$ of BBPI. The C.I.A. and BBPI contents of 12 soybean cultivars were $8,462{\sim}12,428\;U/g$ and $482{\sim}692\;mg%$, respectively. The C.I.A. and BBPI contents were not detected in most of soybean products except soybean sprouts, which contained $10,695{\sim}13,249\;U/g$ of C.I.A. and $529{\sim}803\;mg%$ of BBPI.

  • PDF

Influence of Activation Temperature on Surface and Adsorption Properties of PAN-based Activated Carbon Fibers/Phenolic Resin Matrix Composites (활성화 온도에 의한 PAN계 활성탄소섬유/페놀수지 복합재료의 표면 및 흡착특성)

  • 박수진;김기동;이재락
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.97-104
    • /
    • 2000
  • PAN-based activated carbon fibers/phenolic resin matrix composites (ACFCs) were manufactured via molding process with oxidized carbon fabrics (plain-type) and phenolic resin (resole-type) compounded by 70 : 30 wt%. The green body (as molded) was submitted to carbonization (at 100$0^{\circ}C$) in an inert environment and activation (at 700, 800, 900 and 100$0^{\circ}C$) in a $CO_2$ environment. In this work, the influence of activation temperatures was investigated in surface properties, such as pH, acid- and base-values by titration method, and in adsorption properties, i.e., specific surface area and pore structures by BET-method of the composites. Also, the pressure drops of the specimens were calibrated by ASTM. As a result, the activation temperature influenced the surface property of ACFCs. When the activation temperature was higher than 90$0^{\circ}C$, the surface was gradually developed in basic nature. And, the evolutions of specific surface area, total pore volume and pore size distribution of ACFCs could be easily confirmed the dependence on the activation temperature. Among them, well-developed pore structure from adsorption characteristics was changed of the ACFCs activated at 90$0^{\circ}C$. Also, the pressure drop was slightly decreased with increasing the temperature due to increasing the burn-off with heat treatment temperature of ACFCs.

  • PDF

Studies on the Complexes of Lanthanide ion with Multidentate Ligand (I). Determination of Thermodynamic Parameters with Solution Calorimetric Method in Nonaqueous Solvents (란탄족 원소의 여러자리 리간드 착물에 관한 연구 (제 1 보) 물아닌 용액에서 용액열량계에 의한 열역학적 함수결정)

  • Sam-Woo Kang;Won-Hae Koo;Soo-Min Lee;Chang Choo-Hwan;Moo-Yol Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.588-595
    • /
    • 1989
  • Log K, ${\Delta}$H and ${\Delta}$S for the complexation of $La^{3+},\;Ce^{3+}$ and $Eu^{3+}$with various multidentate ligand containing crown ether, diaza crown ether and diamine ether have been determined in methanol and acetonitril solutions at $25^{\circ}C$ by solution calorimetric titration method. The greater stability constant of $La^{3+}$-15C5 than those of 18C6 diaza [2.2] in methanol are discussed in terms of the size of metal ion and the ligand cavity and of metal ion solvation. The stabilities of $Ce^{3+}$ and $La^{3+}$ ion complexes with a various multidentate ligand in acetonitril are in the order of (diamine ether)<18C6<15C5$Ce^{3+}$, $La^{3+}$ and $Eu^{3+}$-diaza [2.2] complexes in acetonitril are increased with the following order: $Eu^{3+}$ < $La^{3+}$ < $Ce^{3+}$, that is increasing order of the optimum size and of the charge density of metal ion.

  • PDF

Determination of Uranium Isotopes in Spent Nuclear Fuels by Isotope Dilution Mass Spectrometry (동위원소희석 질량분석법을 이용한 사용후핵연료 중 우라늄 동위원소 정량)

  • Kim, Jung Suk;Jeon, Young Shin;Son, Se Chul;Park, Soon Dal;Kim, Jong Goo;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.450-457
    • /
    • 2003
  • The determination of uranium and its isotopes in spent nuclear fuels by isotope dilution mass spectrometry (IDMS) has been studied. The spent fuel samples were dissolved in 8 M $HNO_3$ or its mixture with 14 M $HNO_3-0.05M$ HF. The dissolved solutions were filterred on membrane filter with $1.2{\mu}m$ pore size. The uraniums in the spiked and unspiked sample solutions were quantitatively adsorbed by anion exchange resin, AG 1X8 and eluted with 0.1 M HCl. The contents of uranium and its isotopes ($^{234}U$, $^{235}U$, $^{236}U$$^{238}U$) in the spent fuel samples were determined by isotope dilution mass spectrometric method using $^{233}U$ as spike. The spike reference solution was standarized by reverse isotope dilution mass spectrometry (R-IDMS) using natural and depleted uranium. The results from IDMS were in average relative difference of 0.34% when compared with those by the potentiometric titration method.

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.