• Title/Summary/Keyword: titanium tetra chloride

Search Result 2, Processing Time 0.016 seconds

Linear Low Density Polyethylene Preparation by Titanium-Based Ziegler-Natta Catalysts (티탄이 기본인 Ziegler-Natta 촉매에 의한 선형저밀도폴리에틸렌의 제조)

  • Dong-Ho Lee;Kyung-Eun Min;Cha-Ung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.110-117
    • /
    • 1987
  • For the preparation of linear low density polyethylene (LLDPE), the copolymerization of ethylene and 1-butene was carried out with various catalysts of titanium alkoxidealkylaluminum compound in slurry phase. The effects of catalyst components, aging time, concentration of catalyst components, polymerization time and temperature on the catalytic activity and copolymer composition were examined. The properties of copolymer obtained were also considered with the correlation to the 1-butene contents. It has been found that the titanium tetra-n-butoxide-diethylaluminum chloride catalyst system was the most suitable for the production of LLDPE with higher catalytic activity, more 1-butene content and less soluble parts. The density, glass transition temperature, melting point and heat of fusion of copolymer were decreased with increasing 1-butene contents.

  • PDF

Chlorination Kinetics of Synthetic Rutile with Cl2+CO Gas (Cl2+CO 혼합가스에 의한 합성루타일 염화반응의 속도론적 연구)

  • Hong, Sung-Min;Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.3-10
    • /
    • 2020
  • The chlorination kinetics of synthetic rutile prepared by selective chlorination of ilmenite with Cl2 and CO gas mixture were studied in a fluidized bed. Th e effects of reaction temperature, reaction time, and the ratio of Cl2 and CO partial pressure ($p_{Cl_2}/p_{CO}$) on the conversion rate of TiCl4 were investigated. The conversion rate of TiC4 was low under the high $p_{Cl_2}/p_{CO}$ conditions. Moreover, it was considered that the partial pressure of CO gas was more effective than that of Cl2 gas when comparing the stoichiometric conversion rate and experimental results of high CO partial pressure. Considering the porous structure of particles, the rate controlling step of the chlorination of synthetic rutile was determined to be chemical reaction and the activation energy was calculated as 53.77 kJ/mol.