• Title/Summary/Keyword: titanium alloys

Search Result 288, Processing Time 0.029 seconds

Turning Characteristics of Various Tool Materials in the Machining of Ti-6Al-4V (Ti-6Al-4V 티타늄 합금의 공구 재종에 따른 선삭 특성)

  • Choi, Jong-Guen;Kim, Hyung-Sun;Chung, Jin-Oh
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.38-44
    • /
    • 2008
  • Titanium and its alloys, due to their superior properties of high specific strength and excellent corrosion resistance, are increasingly used in living applications in the 21century. The applications in aerospace and medical industries demand machining process more frequently to obtain a desired product. But unfortunately, this material is one of the most difficult-to-cut. In the turning process of titanium alloys, the key point for successful work is to select proper tool materials and cutting conditions. This study suggests a guidance for selecting the tool materials and the cutting speeds to improve tool life and surface integrity in Ti-6Al-4V titanium turning process. The experiments investigate the change of surface roughnesses, cutting forces and flank wear with various cutting parameters of tool materials, depth of cuts and feeds. As the results, K10 type of insert tip was assured as the best for turning of Ti-6Al-4V titanium alloy.

Recent Trends of Friction Stir Welding of Titanium (타이타늄 소재 마찰교반용접 기술 동향)

  • Chun, Chang-Keun;Kim, Sung-Wook;Kim, Heung-Joo;Chang, Woong-Seong;Noh, Joong-Suk
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.16-20
    • /
    • 2013
  • Titanium and its alloys have been widely using in the various field of industry application due to high corrosion resistant properties and mechanical properties. Titanium is highly reactive in the high temperature state and the formation of titanium oxide and porosities in the nuggets of fusion welding will results in the degradation of the mechanical properties. For this reason the studies of friction stir welding for titanium have been investigated recently. The FSW zones of titanium were classified by the weld nugget (WN), the linear transition boundary (TB) and the heat affected zone (HAZ). The WN along with titanium parent was characterized by the presence of twins and dislocations. The average grain size and hardness of WN has been changed according to heat input. The grain refinement resulted from the FSW increased the hardness in the stir zone. Sound dissimilar joints between SUS 304 and CP-Ti were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700-1100 rpm. Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding, hence the ultimate tensile shear strength of joint reached 100% of Al 1060. Mg alloy and Ti were successfully butt joined by inserting a probe into the Mg alloy plate with slightly offsetting. But Ti-Al intermetallic compound layers formed at the interface of these joints.

Effects of pH and Chloride Concentration on Corrosion Behavior of Duplex Stainless Steel and Titanium Alloys Ti 6Al 2Nb 1Ta 1Mo at Elevated Temperature for Pump Impeller Applications

  • Aymen A., Ahmed;Ammar Yaseen, Burjes;Ammar Yaseen, Burjes
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.454-465
    • /
    • 2022
  • The objective of this study was to determine effects of temperatures and pH of sodium chloride solution with MgCl2 ions on corrosion resistance of duplex stainless-steel X2CrNiMoN22-5-3 (DSS) and Ti 6Al 2Nb1Ta1Mo (Ti). Effects of sodium chloride concentration on corrosion resistance were also studied. Corrosion behavior and pitting morphology of duplex stainless steel (DSS) and Ti alloys were evaluated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). It was found that a decrease in pH significantly reduced the corrosion resistance of both alloys. Changes in chloride concentration and temperature had more substantial impact on corrosion behavior of DSS than on Ti alloys. Pitting corrosion was formed on DSS samples under all conditions, whereas crevice corrosion was developed on Ti samples with the presence of magnesium chloride at 90 ℃. In conclusion, magnesium chloride ions in an exceedingly strong acidity solution appear to interact with re-passivation process at the surface of these alloys and influence the resulting surface topography.

Recent R&D status on friction stir welding of Ti and its alloys (티타늄과 그 합금의 마찰교반용접기술 현황)

  • Kang, Duck-Soo;Lee, Kwang-Jin
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • This article describes the basic technical concepts for applying the friction stir welding (FSW) process to titanium and its alloys. Titanium and its alloys are demanding applications of FSW. During FSW, a protective atmosphere is needed at the welding region to prevent the joints from oxidation due to the absorption of interstitial elements (O, N, and H) at high temperature. The process parameters for FSW have great influence on the microstructure and properties of the joints. No phase transformation occurred in CP Ti because FSW was achieved below the ${\beta}$-transus temperature. Therefore, the mechanical properties of the joints with CP Ti were governed by recrystallization and grain refinement. Furthermore, the strong crystallographic texture indicating <0001>//ND formed in the stir zone. On the other hands, the phase transformation occurred in Ti-6Al-4V alloy because the process temperature reached above ${\beta}$-transus temperature. For this reason, the mechanical properties of the joints with Ti-6Al-4V alloy were altered by not only recry stallization and grain refinement but also phase transformation during FSW. Engineers who want to get sound FSW joints with Ti-6Al-4V alloy have to pay attention to the control about process conditions.

Design of a Multi-Step Warm Heading Process for Subminiature Screws (초소형 스크류 온간 다단 헤딩공정 연구)

  • Jang, Yeon Hui;Jeong, Jin Hwan;Jang, Myung Guen;Hong, Jae-Keun;Kim, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.83-87
    • /
    • 2017
  • A multi-step warm forging process for subminiature screws is investigated. Due to the low formability of Titanium alloys, bit forming of Titanium screws is difficult by cold forging. In order to overcome this low formability of Titanium alloys, two candidate processes, i.e., multi-step forging and warm forging are introduced. First, a multi-step (two-step) forging process is investigated. The punch shape and stroke of forging during the first step is designed via various analyses. Finally, the bit formability is investigated at different forging temperatures. Analyses are carried out for two-step forging at various temperatures and the formability under these thermal conditions is compared.

Low-temperature/high-strain rate superplasticity of two-phase titanium alloys (2상 타이타늄 합금의 저온/고속 초소성)

  • Part, C.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.76-79
    • /
    • 2009
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of $\alpha/\beta\;\ll\;\alpha/\alpha\;\approx\;\beta/\beta$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

  • PDF

Enhanced Superplasticity of Two-phase Titanium Alloys by Microstructure Control (2상 타이타늄 합금의 미세조직 제어를 통한 초소성 특성 향상)

  • Park, C.H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of ${\alpha}/{\beta}\;\ll\;{\alpha}/{\alpha}\;{\approx}\;{\beta}/{\beta}$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

The calculation of stress-strain behavior of Ti-10V-2Fe-3Al alloys (Ti-10V-2Fe-3Al 합금의 응력-변형거동 계산)

  • 오택열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.38-47
    • /
    • 1989
  • The Finite Element Method has been employed to calculate the effect of particle size, matrix, and volume fractions on the stress-strain relations of .alpha.-.betha. titanium alloys. It was found that for a given volume fraction, the calculated stress-strain curve was higher for a finer particle size than for a coarse particle size within the range of the strains considered, and this behavior was seen for all the different volume fraction alloys considered. The calculated stress-strain curves for three vol. pct .alpha. alloys were compared with their corresponding experimental curve, and in general, good agreement was found.

  • PDF

The effect of fluoride-containing oral rinses on the corrosion resistance of titanium alloy (Ti-6Al-4V)

  • Huang, Gui-Yue;Jiang, Heng Bo;Cha, Jung-Yul;Kim, Kwang-Mahn;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.47 no.5
    • /
    • pp.306-312
    • /
    • 2017
  • Objective: The purpose of this study was to examine the effect of commercially available fluoride-containing oral rinses on the corrosion behavior of titanium alloys, which are the main components of orthodontic miniscrews. Methods: Four commercially available oral rinses (solution A, pH 4.46/260 ppm fluoride; solution B, pH 4.41/178 ppm fluoride; solution C, pH 6.30/117 ppm fluoride; and solution D, pH 4.17/3.92 ppm fluoride) were tested on titanium alloy (Ti-6Al-4V) circular plates, and saline was used as the control. The open-circuit potential and potentiodynamic polarization of these materials were measured. Thereafter, all samples were evaluated under a field-emission scanning electron microscope. Results: Among the tested oral rinses, except solution D, the more the fluoride content was, the greater was the corrosion potential downtrend; the corrosion resistance of the titanium alloy sample was also lowered significantly (p < 0.05). Field-emission scanning electron microscopic analysis of the surface morphology of the titanium alloy samples revealed that all samples had some defects, crevices, or pitting after exposure to the oral rinses than before treatment. In particular, the samples in solution A showed the most changes. Conclusions: Commercially available oral rinses having a high fluoride concentration and a low pH may reduce the corrosion resistance of titanium alloys used in dental appliances such as orthodontic titanium miniscrews and brackets.

Effects of phase changes on mechanical properties of Ti-Nb alloys (Ti-Nb계 합금의 상변화가 기계적 성질에 미치는 영향)

  • Park, Hyo-Byeong
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • The use of titanium alloys as biomaterials is increasing due to their superior biocompatibility and enhanced corrosion resistance compared to conventional stainless steels and cobalt-based alloys. Ti-6Al-4V ($\alpha+\beta$type) alloy instead of pure titanium ($\alpha$type) is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. But it has been reported recently that the vanadium element expresses cytotoxicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study. This paper was described the influence of phase changes of Ti-Nb alloys on mechanical properties. Ti-3wt.%Nb($\alpha$type),Ti-20wt.%Nb($\alpha+\beta$type) and Ti-40wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. The specimens were homogenized at 1050$^{\circ}C$ for 24hr and were then hot rolled to 50% reduction. Each alloys were solution heat treated at $\beta$ zone and $\alpha+\beta$ zone after homogenization and then were aged. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1) The higher hardness value of $\alpha+\beta$type alloy was obtained compared to the, $\alpha,\beta$type alloys. 2) The aged treated showed better hardness compared to the solution heat treated, homogenized. 3) In the case of solution and aging treatment at $\beta$region, the $\alpha+\beta$type alloy showed the most highest tensile strength and $\beta$type alloy showed the best elongation.

  • PDF