• 제목/요약/키워드: tissue-specific transcription

검색결과 127건 처리시간 0.023초

A Simple Detection of Sweetpotato Feathery Mottle Virus by Reverse Transcription Polymerase Chain Reaction

  • Jeong Jae-Hun;Chakrabarty Debasis;Kim Young-Seon;Eun Jong-Seon;Choi Yong-Eui;Paek Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • 제5권2호
    • /
    • pp.83-86
    • /
    • 2003
  • A reverse transcription polymerase chain reaction (RT-PCR) protocol was developed using two specific 22-mer primers located in coat protein gene of SPFMV. A 411 bp PCR-product was detected in virus infected plants as well as tissue culture raised sweet potato but not in healthy plants. For optimization of RT-PCR protocol, the optimum crude nucleic acid concentration, annealing temperature, primer concentration and numbers of PCR-cycle for maximum sensitivity and specificity were determined. The optimum condition for RT-PCR was as follows: RT-PCR reaction mixture was one-step mixture, containing 50 pmol of primer, 30 units of reverse transcriptase, 5 units of RNasin, and the crude nucleic acid extracts (200 ng). In RT-PCR, cDNA was synthesized at $42^{\circ}C$ for 45 min before a quick incubation on ice after pre-denaturation at $95^{\circ}C$ for 5 min. The PCR reaction was carried out for 40 cycles at $96^{\circ}C$ for 30 see, $63^{\circ}C$ for 30 sec, $72^{\circ}C$ for 1 min, and finally at $72^{\circ}C$ for 10 min. The viral origin of the amplified product was confirmed by sequencing, with the sequence obtained having $95-98\%$ homology with published sequence data for SPFMV. The benefits of this RT-PCR based detection of SPFMV would be simple, rapid and specific.

Locus Control Region의 구조와 기능 (The Structure and Function of Locus Control Region)

  • 김애리
    • 생명과학회지
    • /
    • 제17권11호
    • /
    • pp.1587-1592
    • /
    • 2007
  • Locus control region (LCR) is a cia-acting element which regulates the transcription of genes in developmental stage and/or tissue-specific pattern. Typically, LCR consists of several DNase I hypersensitive sites (HSs), where the binding motifs for transcriptional activators are present. The binding of activators to the HSs recruits chromatin modifying complexes to the LCR, opening chromatin structure and modifying histones covalently through the locus. LCR forms close physical contact with target gene located at a distance by looping away intervening region. In addition, non-coding RNA is transcribed from LCR toward target genes in continuously acetylated active domain. These structural and functional features of LCR suggest that the LCR plays many roles in chromatin activation and transcriptional regulation.

미성숙 매복지치의 치낭, 치수, 치근유두 조직에서 다능성 줄기세포의 분리와 특성화에 대한 연구 (Isolation and characterization of human dental tissue-derived stem cells in the impacted wisdom teeth: comparison of dental follicle, dental pulp, and root apical papilla-derived cells)

  • 송정호;박봉욱;변준호;강은주;노규진;신상훈;김욱규;김종렬
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권3호
    • /
    • pp.186-196
    • /
    • 2010
  • Introduction: The first aim of this study was to isolate the dental tissue-derived stem cells from the dental follicle (DF), dental pulp (DP), and root apical papilla (RAP) of the extracted wisdom teeth. Second was to evaluate their characterization with the expressions of transcription factors and cell surface markers. Finally, their ability of the in vitro multi-lineage differentiations into osteogenic and adipogenic cells were compared, respectively. Materials and Methods: Dental tissues, including dental follicle, dental pulp, and root apical papilla, were separated in the extracted wisdom teeth. These three dental tissues were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with supplements, respectively. After passage 3, the homogeneous shaped dental tissue-derived cells were analyzed the expression of transcription factors (Oct-4, Nanog and Sox-2) and cell surface markers (CD44, CD90 and CD105) with reverse transcription polymerase chain reaction (RT-PCR) and fluorescence-activated cell sorting (FACS) analysis. In order to evaluate in vitro multi-lineage differentiations, the culture media were changed to the osteogenic and adipogenic induction mediums when the dental tissue-derived cells reached to passage 3. The characteristics of these three dental tissue-derived cells were compared with immunohistochemistry. Results: During primary culture, heterogenous and colony formatted dental tissue-derived cells were observed in the culture plates. After passage 2 or 3, homogenous spindle-like cells were observed in all culture plates. Transcription factors and mesenchymal stem cell markers were positively observed in all three types of dental tissue-derived cells. However, the quantity of expressed transcription factors was most large in RAP-derived cells. In all three types of dental tissue-derived cells, osteogenic and adipogenic differentiations were observed after treatment of specific induction media. In vitro adipogenic differentiation was similar among these three types of cells. In vitro osteogenic differentiation was most strongly and frequently observed in the RAP-derived cells, whereas rarely osteogenic differentiation was observed in the DP-derived cells. Conclusion: These findings suggest that three types of human dental tissue-derived cells from extracted wisdom teeth were multipotent mesenchymal stem cells, have the properties of multi-lineage differentiations. Especially, stem cells from root apical papilla (SCAP) have much advantage in osteogenic differentiation, whereas dental follicle cells (DFCs) have a characteristic of easy adipogenic differentiation.

Chrysanthemum stunt viroid in Dendranthema grandiflorum

  • Chung, Bong-Nam;Park, Gug-Seoun;Kim, Hyun-Ran;Kim, Jeong-Soo
    • The Plant Pathology Journal
    • /
    • 제17권4호
    • /
    • pp.194-200
    • /
    • 2001
  • Chrysanthemum stunt viroid (CSVd) ws identified in chrysanthemum cv. Chunkwang showing symptoms of stunt with leaf distortion (K1) and stunt with chlorosis of leaves (K2) collected from the main cultivation area of Masan, Kyongnam province in Korea. The specific RNAs related with the diseased chrysanthemums were detected. Full-length 354 bp CSVd cDNAs were amplified from infected tissue by reverse transcription and polymerase chain reaction using a pair of primers specific for CSVd sequence. The amplified cDNA products were analyzed by agarose gel electrophoresis and the specific cDNAs were cloned. Nucleotide sequences of the two CSVd isolates K1 and K2 varied. Phylogenetic analysis of the nucleotide sequences of CSVd isolates indicated that K1 was closely related with J2 and Am 2 isolates. K1 and K2 were transmitted by grafting to Dendranthema grandiflorum cv. Mistletoe, Gynura aurantiaca, and Lycopersicon esculentum cv. Rutgers. This is the first report of CSVd in D. grandiflorum in Korea.

  • PDF

No excessive mutations in transcription activator-like effector nuclease-mediated α-1,3-galactosyltransferase knockout Yucatan miniature pigs

  • Choi, Kimyung;Shim, Joohyun;Ko, Nayoung;Park, Joonghoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권2호
    • /
    • pp.360-372
    • /
    • 2020
  • Objective: Specific genomic sites can be recognized and permanently modified by genome editing. The discovery of endonucleases has advanced genome editing in pigs, attenuating xenograft rejection and cross-species disease transmission. However, off-target mutagenesis caused by these nucleases is a major barrier to putative clinical applications. Furthermore, off-target mutagenesis by genome editing has not yet been addressed in pigs. Methods: Here, we generated genetically inheritable α-1,3-galactosyltransferase (GGTA1) knockout Yucatan miniature pigs by combining transcription activator-like effector nuclease (TALEN) and nuclear transfer. For precise estimation of genomic mutations induced by TALEN in GGTA1 knockout pigs, we obtained the whole-genome sequence of the donor cells for use as an internal control genome. Results: In-depth whole-genome sequencing analysis demonstrated that TALEN-mediated GGTA1 knockout pigs had a comparable mutation rate to homologous recombination-treated pigs and wild-type strain controls. RNA sequencing analysis associated with genomic mutations revealed that TALEN-induced off-target mutations had no discernable effect on RNA transcript abundance. Conclusion: Therefore, TALEN appears to be a precise and safe tool for generating genomeedited pigs, and the TALEN-mediated GGTA1 knockout Yucatan miniature pigs produced in this study can serve as a safe and effective organ and tissue resource for clinical applications.

인핸서 RNA에 의한 유전자 전사 조절 (Transcriptional Regulation of Genes by Enhancer RNAs)

  • 김예운;김애리
    • 생명과학회지
    • /
    • 제26권1호
    • /
    • pp.140-145
    • /
    • 2016
  • 다세포 생물의 유전자들은 발생 및 분화 그리고 조직 특이적으로 전사되며, 이러한 유전자 전사는 게놈 상에서 멀리 떨어져 존재하는 인핸서(enhancer) 부위에 의해 조절된다. 최근의 연구들은 활성화된 인핸서에서 RNA Polymerase II (Pol II)에 의해 noncoding RNA가 전사된다고 보고하고 있으며, 이들은 인핸서 RNA (eRNA)라 불리고 있다. eRNA는 인핸서 중심으로부터 양방향으로 합성되며, 5’ capping은 일어나지만, splicing이나 3’ tailing은 되지 않는다. eRNA의 전사는 전사 활성자의 결합에 의해 일어나며, 표적 유전자의 전사 수준과 비례하게 일어난다. 인위적으로 eRNA의 전사를 억제하거나 합성된 eRNA를 제거하면 표적 유전자의 전사는 억제된다. eRNA의 전사 과정은 인핸서 부분의 활성 히스톤 변형을 유도하며, 합성된 eRNA는 인핸서와 프로모터 사이의 크로마틴 고리 구조 형성을 매개한다. 또한 표적 유전자의 프로모터에 RNA Pol II를 모집하고 이들의 신장을 촉진하는 것도 eRNA의 역할로 보인다. 본 총설은 인핸서 유래 eRNA의 특징에 대해 살펴보고, eRNA의 합성 기작 및 표적 유전자의 전사 조절을 위한 eRNA의 역할을 정리해보고자 한다.

Gene Expression and Regulation of Wax Moth Transferrin by PAMPs and Heavy Metals

  • Han, Jik-Hyon;Lee, Ji-Sook;Lee, Chang-Seok;Koh, Sang-Kyun;Seo, Sook-Jae;Yun, Chi-Young
    • Animal cells and systems
    • /
    • 제13권3호
    • /
    • pp.297-304
    • /
    • 2009
  • A complete mRNA sequence of transferrin from the wax moth, Galleria mellonella, was obtained, and compared with those of other species. We previously reported that the sequence was most similar to those of Manduca sexta and Bombyx mori. As in other moths, G. mellonella transferrin had only one iron-binding site at its N-terminal region. Semi-qRT PCR was conducted to investigate tissue-specific distribution and transcriptional regulation of the wax moth transferrin mRNA. Larval muscle and fat body contained larger quantity of mRNA than other tested tissues. In this study, it was observed that iron and cadmium regulated transferrin transcription, and this regulation pattern was tissue specific. Iron up-regulated transferrin mRNA level in fat body, while suppressed it in the Malpighian tubules and silk glands. Cadmium decreased the mRNA level in fat body, muscle, and Malpighian tubules, but significantly increased the mRNA level in silk glands. In addition, the mRNA expression was induced by all tested pathogen-associated molecular patterns (PAMPs) including LPS, lipoteichoic acid (LTA), glucan, and even chitin.

Genes expression monitoring using cDNA microarray: Protocol and Application

  • Muramatsu Masa-aki
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2000년도 국제심포지움 및 추계학술대회
    • /
    • pp.31-41
    • /
    • 2000
  • The major issue in the post genome sequencing era is determination of gene expression patterns in variety of biological systems. A microarray system is a powerful technology for analyzing the expression profile of thousands of genes at one experiment. In this study, we constructed cDNA microarray which carries 2,304 cDNAS derived from oligo-capped mouse cDNA library. Using this hand-made microarray we determined gene expression in various biological systems. To determine tissue specific genes, we compared Nine genes were highly-expressed in adult mouse brain compared to kidney, liver, and skeletal muscle. Tissue distribution analysis using DNA microarray extracted 9 genes that were predominantly expressed in the brain. A database search showed that five of the 9 genes, MBP, SC1, HiAT3, S100 protein-beta, and SNAP25, were previously known to be expressed at high level in the brain and in the nervous system. One gene was highly sequence similar to rat S-Rex-s/human NSP-C, suggesting that the gene is a mouse homologue. The remaining three genes did not match to known genes in the GenBank/EMBL database, indicating that these are novel genes highly-expressed in the brain. Our DNA microarray was also used to detect differentiation specific genes, hormone dependent genes, and transcription-factor-induced genes. We conclude that DNA microarray is an excellent tool for identifying differentially expressed genes.

  • PDF

Gene structure and expression characteristics of liver-expressed antimicrobial peptide-2 isoforms in mud loach (Misgurnus mizolepis, Cypriniformes)

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제20권12호
    • /
    • pp.31.1-31.11
    • /
    • 2017
  • Background: Liver-expressed antimicrobial peptide-2 (LEAP-2) is an important component of innate immune system in teleosts. In order to understand isoform-specific involvement and regulation of LEAP-2 genes in mud loach (Misgurnus mizolepis, Cypriniformes), a commercially important food fish, this study was aimed to characterize gene structure and expression characteristics of two paralog LEAP-2 isoforms. Results: Mud loach LEAP-2 isoforms (LEAP-2A and LEAP-2B) showed conserved features in the core structure of mature peptides characterized by four Cys residues to form two disulfide bonds. The two paralog isoforms represented a tripartite genomic organization, known as a common structure of vertebrate LEAP-2 genes. Bioinformatic analysis predicted various transcription factor binding motifs in the 5'-flanking regions of mud loach LEAP-2 genes with regard to development and immune response. Mud loach LEAP-2A and LEAP-2B isoforms exhibited different tissue expression patterns and were developmentally regulated. Both isoforms are rapidly modulated toward upregulation during bacterial challenge in an isoform and/or tissue-dependent fashion. Conclusion: Both LEAP-2 isoforms play protective roles not only in embryonic and larval development but also in early immune response to bacterial invasion in mud loach. The regulation pattern of the two isoform genes under basal and stimulated conditions would be isoform-specific, suggestive of a certain degree of functional divergence between isoforms in innate immune system in this species.

Cloning of Mouse AQP-CD Gene

  • Jung, Jin-Sup;Kim, Joo-In;Oh, Sae-Ok;Park, Mi-Young;Bae, Hae-Rhan;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권2호
    • /
    • pp.195-200
    • /
    • 1997
  • Water transport in highly-permeable membranes is facilitated by some specialized pathways, which are called aquaporins (AQP). AQP1 (AQP-CHIP) is the first recognized aquaporin identified from red cells and renal proximal tubules. Up until now 4 other aquaporin homologs have been reported. Each aquaporin has its unique tissue distribution and regulatory mechanims. To elucidate molecular mechanisms for their transcription regulation and tissue-specific expression isolation of aquaporin genes is required. To clone promoters of the AQP family mouse genomic library was screened by the 1st exon-specific probe of AQP4, and 5 different plaques were positively hybridized. Phage DNAs were purified and characterized by restriction mapping and sequencing. One of them is the mouse AQP-CD gene. The gene was consisted of 4 exons and the exon-intron boundaries of mouse AQP-CD gene were identified at identical positions in other related genes. The 5'-flanking region of AQP-CD gene contains one classic TATA box, a GATA consensus sequence, an E-box and a cyclic AMP-responsive element. The cloning of the mouse AQP-CD gene, of which product is expressed in the collecting duct and is responsible for antidiuresis by vasopressin, will contribute to understand the molecular mechanisms of tissue-specific expression and regulation of AQP-CD gene under various conditions.

  • PDF