• 제목/요약/키워드: tissue-specific gene expression

검색결과 352건 처리시간 0.02초

내재적 유전자에 의한 어류난자에서의 hEGE 단백질 생산을 위한 기술개발 (Development of Transgenic Fish for the Production of Human EGF Protein)

  • 황창남;송기철;이재현;윤종만;김기동;이상호;박홍양
    • 한국가축번식학회지
    • /
    • 제25권3호
    • /
    • pp.277-286
    • /
    • 2001
  • 기존의 미세주입 및 정자 electroporation에 의한 보다 효율적인 유전자 도입방법을 개선하여 간단하고 고효율성의 유전자 변환기술을 위한 유전자 도입장치의 시제품 개발로 다수의 난자를 전기적으로 단순화할 수 있는 상업화의 가능성을 보여주었다. 도입된 유전자는 모든 초기배에서 발현됨을 보여 주었다. 특히 난황내의 합포체세포(syncytium)에서의 transient성의 강한 발현은 전기자극에 의해 많은 수의 난자에 유전자를 도입하고 100% 발현되는 체계를 이용하여 transient 시기에서 인간 유용단백질 생산의 가능성을 타진할 수 있는 결과를 보여 주었다. 어류유전자 발현의 작동되는가를 검색하기 위해 신경세로조직특이 tubulin promoter 를 이용한 결과 gfp의 발현이 뇌주변과 척추를 중심으로 체내 전반의 신경세포내에 발현이 강하게 나타남을 보여 주었다. 한편 reporter 유전자 이외에 간세포로부터 전체 RNA를 분리시켜 vitellogenin의 분해산물인 phosvitin cDNA의 길이와 promoter지역인 1.6 kb에 대한 primer쌍들을 선정한 상태에서 PCR에 의해 각각 cDNA와 gDNA로부터 cloning 중에 있으며 human factor Ⅶ과 epidermal growth factor, vitellogenin의 3종의 target 단백 질유전자를 구축 및 검정 화인 중에 있다.

  • PDF

T $\alpha$ 1 $\alpha$ -tubulin promoter directs neuron-specific expression of green fluorescent protein in loach embryo

  • Joon Kim
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 1998년도 제4차 학술발표대회 및 정기총회
    • /
    • pp.59-60
    • /
    • 1998
  • A DNA construct containing rat T $\alpha$ 1 $\alpha$ -tuulin gene 5'-flanking sequence and GFP reporer gene was microinjected into 1-cell loach embryos. Neuron-specific FGP expression was observed in developing loach embryos and early stage fry. The results demonstrated that rat T $\alpha$ 1 $\alpha$ -tubulin gene promoter may be sufficient to specify gene expression to neurons in loach embryos. Thus, the use of GFP reporter controlled by T $\alpha$ 1 $\alpha$ -tubulin gene promoter may facilitate visualization of the dynamic processes of neural tissue development.

  • PDF

Transactivators for the Odontoblast-specific Gene Targeting

  • Chung, Kyung-Chul;Kim, Tak-Heun;Yang, Yeon-Mee;Baek, Jin-A;Ko, Seung-O;Cho, Eui-Sic
    • International Journal of Oral Biology
    • /
    • 제34권2호
    • /
    • pp.105-113
    • /
    • 2009
  • Dentin, a major component of teeth, is formed by odontoblasts which produce the dentin matrix beneath the dental epithelium and induce the mineralization of dentin. To date, the biochemical properties of dentin matrix proteins have been well characterized, but upstream regulators of these proteins are not yet well known. Recently in this regard, several transcription factors have been identified as potential regulators of matrix proteins. Most transcription factors are generally involved in diverse biological processes and it is essential to identify those that are odontoblast-specific transactivators to further understand the process of dentin formation. We thus analyzed the expression pattern of dentin matrix proteins and the activities of established transactivators containing a Cre-locus. Expression analyses using in situ hybridization showed that dentin matrix proteins are sequentially expressed in differentiating odontoblasts, including type-I collagen, Dmp-1 and Dspp. The activities of the transactivators were evaluated using ${\beta}$-galactosidase following the generation of double transgenic mice with each transactivator and the ROSA26R reporter line. The ${\beta}$-galactosidase activity of each transactivator paralled the expression of the matrix proteins. These results thus showed that these transactivators could be utilized for odontoblastspecific conditional gene targeting. In addition, time- and tissue-specific conditional gene targeting might also be achieved using a combination of these transactivators. Odontoblast-specific conditional gene targeting with these transactivators will likely also provide new insights into the molecular mechanisms underlying dentin formation.

Beyond gene expression level: How are Bayesian methods doing a great job in quantification of isoform diversity and allelic imbalance?

  • Oh, Sunghee;Kim, Chul Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.225-243
    • /
    • 2016
  • Thanks to recent advance of next generation sequencing techniques, RNA-seq enabled to have an unprecedented opportunity to identify transcript variants with isoform diversity and allelic imbalance (Anders et al., 2012) by different transcriptional rates. To date, it is well known that those features might be associated with the aberrant patterns of disease complexity such as tissue (Anders and Huber, 2010; Anders et al., 2012; Nariai et al., 2014) specific differential expression at isoform levels or tissue specific allelic imbalance in mal-functionality of disease processes, etc. Nevertheless, the knowledge of post-transcriptional modification and AI in transcriptomic and genomic areas has been little known in the traditional platforms due to the limitation of technology and insufficient resolution. We here stress the potential of isoform variability and allelic specific expression that are relevant to the abnormality of disease mechanisms in transcriptional genetic regulatory networks. In addition, we systematically review how robust Bayesian approaches in RNA-seq have been developed and utilized in this regard in the field.

Molecular Characterization and Tissue-specific Expression of a Novel FKBP38 Gene in the Cashmere Goat (Capra hircus)

  • Zheng, X.;Hao, X.Y.;Chen, Y.H.;Zhang, X.;Yang, J.F.;Wang, Z.G.;Liu, D.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.758-763
    • /
    • 2012
  • As a member of a subclass of immunophilins, it is controversial that FKBP38 acts an upstream regulator of mTOR signaling pathway, which control the process of cell-growth, proliferation and differentiation. In order to explore the relationship between FKBP38 and mTOR in the Cashmere goat (Capra hircus) cells, a full-length cDNA was cloned (GenBank accession number JF714970) and expression pattern was analyzed. The cloned FKBP38 gene is 1,248 bp in length, containing an open reading frame (ORF) from nucleotide 13 to 1,248 which encodes 411 amino acids, and 12 nucleotides in front of the initiation codon. The full cDNA sequence shares 98% identity with cattle, 94% with horse and 90% with human. The putative amino acid sequence shows the higher homology which is 98%, 97% and 94%, correspondingly. The bioinformatics analysis showed that FKBP38 contained a FKBP_C domain, two TPR domains and a TM domain. Psite analysis suggested that the ORF encoding protein contained a leucine-zipper pattern and a Prenyl group binding site (CAAX box). Tissue-specific expression analysis was performed by semi-quantitative RT-PCR and showed that the FKBP38 expression was detected in all the tested tissues and the highest level of mRNA accumulation was detected in testis, suggesting that FKBP38 plays an important role in goat cells.

Tissue-specific expression of DNA repair gene, N-methylpurine-DNA glycosylase (MPG) in Balb/c mice without external damage

  • Kim, Nam-Keun;Lee, Sook-Hwan;Ko, Jung-Jae;Roy, Rabindra;Lee, Hey-Kyung;Kwak, In-Pyung;Cha, Kwang-Yul
    • Journal of Genetic Medicine
    • /
    • 제2권1호
    • /
    • pp.31-34
    • /
    • 1998
  • The N-methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, removes N-methylpurine and other damaged purines induced in DNA. Tissue-specific mRNA levels of the N-methylpurine-DNA glycosylase (MPG) were investigated in Balb/c mice of four different growing stages; newborn, 1, 4 and 8-weeks postpartum. MPG expressions in the newborn and the 8-week-old mice were the highest in thymus and testis, respectively. The tested tissues of the newborn mice had consistently higher MPG mRNA level than 8-week-old adults except in testis and thymus. The MPG mRNA level in testis was the lowest in the newborn mice, but it attained the highest in the 8-week-old mice. The levels of MPG mRNA among the different tissues in the newborn and the 8-week-old mice were more than 9.0 and 19.0-fold respectively. These results suggest that the of MPG expression was dependent on the growing stage and had tissue-specificity.

  • PDF

Cloning of Mouse AQP-CD Gene

  • Jung, Jin-Sup;Kim, Joo-In;Oh, Sae-Ok;Park, Mi-Young;Bae, Hae-Rhan;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권2호
    • /
    • pp.195-200
    • /
    • 1997
  • Water transport in highly-permeable membranes is facilitated by some specialized pathways, which are called aquaporins (AQP). AQP1 (AQP-CHIP) is the first recognized aquaporin identified from red cells and renal proximal tubules. Up until now 4 other aquaporin homologs have been reported. Each aquaporin has its unique tissue distribution and regulatory mechanims. To elucidate molecular mechanisms for their transcription regulation and tissue-specific expression isolation of aquaporin genes is required. To clone promoters of the AQP family mouse genomic library was screened by the 1st exon-specific probe of AQP4, and 5 different plaques were positively hybridized. Phage DNAs were purified and characterized by restriction mapping and sequencing. One of them is the mouse AQP-CD gene. The gene was consisted of 4 exons and the exon-intron boundaries of mouse AQP-CD gene were identified at identical positions in other related genes. The 5'-flanking region of AQP-CD gene contains one classic TATA box, a GATA consensus sequence, an E-box and a cyclic AMP-responsive element. The cloning of the mouse AQP-CD gene, of which product is expressed in the collecting duct and is responsible for antidiuresis by vasopressin, will contribute to understand the molecular mechanisms of tissue-specific expression and regulation of AQP-CD gene under various conditions.

  • PDF

The Suicide Gene Diphtheria Toxin A Based Therapy in Cancer Treatment

  • Nguyen.T.Q., Anh;Jeong, Dong-Kee
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권3호
    • /
    • pp.155-168
    • /
    • 2012
  • Therapeutic cancer is a long lasting and turbulent history accompany with the milestones in surgical intervention, chemotherapy and radiotherapy. In the past decade, however, metastatic cancer still obstinately exists challenging the professional scientist. Beside the major forms of cancer treatment, Diphtheria toxin (DT) which is produced by a pathogenic strain of bacterium Corynebacterium diphtheria to shield themselves against the other dangerous organism, have been researched as a potential candidate to overcome the drawback such as non-specific, non-effect to drug resistant cancer cell and side effects when using chemotherapy and radiotherapy. In the context of suicide gene therapy, the DT expression under controlling of tissue-specific promoter will be targeted in cancer cell but defect in normal cell. The molecular mechanism, characteristic of DT-bases therapy and prominent achievements of preclinical and clinical studies for the past decade are summarized and discussed in this review.

Age-dependent expression of ion channel genes in rat

  • Sung-Cherl Jung;Tong Zhou;Eun-A Ko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.85-94
    • /
    • 2023
  • Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.

구강 편평상피암종에서 CDH-13 유전자의 promoter methylation에 대한 연구 (PROMOTER METHYLATION OF THE CDH-13 GENE IN THE ORAL SQUAMOUS CELL CARCINOMA)

  • 이문주;한세진;김경욱
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권5호
    • /
    • pp.525-531
    • /
    • 2008
  • CDH-13(T-cadherin), which is one of a kind among the 20 cadherins, can be found mainly in wall of aorta, neuron, spleen, blood vessel etc. It is also called H-cadherin. This structural difference can explain that CDH-13 is thought to play a key role in maintaining mutual relation between extra and intra-cellular environment rather than in cell adhesion. The main function of CDH-13 is to participate in blood vessel function. Additionally, it is known to regulate cell growth and cell contact inhibition. When cells are proliferating, cell surface perceives other cells so that substance such as CDH-13 can inhibit their growth or proliferation resulting in homeostasis without endless proliferation or invasion of connective tissue boundaries. However, tumor cell itself appears to be different from normal cells' growth, invasion or transmission. Therefore, it can be diagnosed that these characteristics are closely related to expression of CDH-13 in tumor cells. This study is to investigate expression of CDH-13 in SCC and its correlation with promoter methylation. 20 of tissue species for the study are excised and gathered from 20 patients who are diagnosed as SCC in department of OMS, dental hospital, dankook university. To find development of CDH-13 in each tissue samples, immunohistochemical staining, RT-PCR gene analysis and methylation specific PCR are processed. The results are as follows. 1.Immunohistochemical staining: In normal oral squamous epithelial tissue, strong expression of CDH-13 was found in cell plasma membrane of basal cell layer. On the other hand, in case of low-differentiated oral SCC, development of CDH-13 was hardly seen. 2.The development of CDH-13 gene: In 9 of samples, expression of CDH-13 gene could be seen and 2 of them showed low expression compared to the others. And rest of the 11 samples showed no expression of CDH-13 gene. 3.Methylation of CDH-13 gene: Among 9 samples which expressed CDH-13 gene, 7 of them showed unmethylation. In addition, among 11 samples without CDH-13 gene expression, 10 showed methylation. According to the results stated above, promoter methylation were found in 13 samples(65%) among 20 of oral SCC samples. In low-differentiated SCC, suppression of gene expression could be seen accompanying promoter methylation. These phenomenon of gene expression was proved by immunohistochemical investigation. Finally, for development of oral SCC, conclusions can be made that suppression of CDH-13 played a main role and suppression of gene expression was originated from promoter methylation. Considering this, it is expected that suppression of CDH-13 from promoter methylation to be utilized as a good diagnostic marker of oral SCC.