• Title/Summary/Keyword: tissue-specific expression

Search Result 600, Processing Time 0.03 seconds

Nam and Kim #1 Tissue-specific expression of pFV4CAT in transgenic mud loach (Misgurnus mizolepis) germ line (미꾸라지(Misgurnus mizolepis)에서 pFV4CAT 의 조직 특이적 발현)

  • Nam, Yoon-Kwon;Kim, Dong-Soo
    • Korean Journal of Ichthyology
    • /
    • v.9 no.1
    • /
    • pp.91-98
    • /
    • 1997
  • The transgene, pFV4CAT, containing CAT reporter gene regulated by carp $\beta$-actin promoter, was expressed in independent transgenic mud loach germ lines, determined by reverse transcriptase-PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). Expression of the transmitted transgene was found to be tissue-specific in F1 and F2 generations. Tissue specificity of the expression was dependent on each transgenic line with reproducible patterns. Liver and spleen did express the transgene more frequently than other tissues tested, and muscle and heart revealed the higher amount of CAT than other tissues, while testes showed the lowest expression level. The highest level of CAT expression in muscle from a transgenic F1 line was corresponding to 68-fold compared to the basal levels of controls.

  • PDF

Comparison of Expression Profiles of HOX Gene Family in Human Embryonic Stem Cells and Selected Human Fetal Tissues

  • Hwang Jung-Hye;Kim Kye-Seong;Kim Byung-Ju;Kwon Hee-Sun;Lee Man-Ryoul;Park Moon-Il;Jang Se-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.556-561
    • /
    • 2006
  • The HOX genes coding homeodomain proteins have been suggested as a candidate molecular switch that determines the fates of cells during embryonic development and patterning. It is believed that a set of differentiation-specific HOX genes enter into a turn-on state during tissue differentiation, in contrast to stem cell-specific HOX genes that enter into a turn-off state. However, comprehensive data of expression profiles of HOX genes in human embryonic stem cells (hESC) and differentiated embryonic tissues are not available. In this study, we investigated the expression patterns of all 39 HOX genes in hESC and human fetal tissues and analyzed the relationships between hESC and each tissue. Of the 39 genes, 18 HOX genes were expressed in stem cells, and diverse expression patterning was observed in human fetal tissues when compared with stem cells. These results indicate that HOX genes could be main targets for switching of stem cell differentiation into tissues.

Cell type-specific gene expression profiling in brain tissue: comparison between TRAP, LCM and RNA-seq

  • Kim, TaeHyun;Lim, Chae-Seok;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.388-394
    • /
    • 2015
  • The brain is an organ that consists of various cell types. As our knowledge of the structure and function of the brain progresses, cell type-specific research is gaining importance. Together with advances in sequencing technology and bioinformatics, cell type-specific transcriptome studies are providing important insights into brain cell function. In this review, we discuss 3 different cell type-specific transcriptome analyses i.e., Laser Capture Microdissection (LCM), Translating Ribosome Affinity Purification (TRAP)/RiboTag, and single cell RNA-Seq, that are widely used in the field of neuroscience. [BMB Reports 2015; 48(7): 388-394]

Methylation of the Mouse Dlx5 and Osx Gene Promoters Regulates Cell Type-specific Gene Expression

  • Lee, Ji Yun;Lee, Yu Mi;Kim, Mi Jin;Choi, Je Yong;Park, Eui Kyun;Kim, Shin Yoon;Lee, Sam Poong;Yang, Jae Sup;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.182-188
    • /
    • 2006
  • Dlx5 and Osx are master regulatory proteins essential for initiating the cascade leading to osteoblast differentiation in mammals, but the mechanism of osteoblast-specific expression is not fully understood. DNA methylation at CpG sequences is involved in tissue and cell type-specific gene expression. We investigated the methylation status of Dlx5 and Osx in osteogenic and nonosteogenic cell lines by methylationspecific PCR (MSP). The CpG dinucleotides of the Dlx5 and Osx promoter regions were unmethylated in osteogenic cell lines transcribing these genes but methylated in nonosteogenic cell lines. Treatment of C2C12 cells with 5-AzadC induced dose- and timedependent expression of Dlx5 and Osx mRNA by demethylating the corresponding promoters. Furthermore the mRNAs for the osteoblast markers ALP and OC, which were undetectable in untreated cells, gradually increased after 5-AzadC treatment. In addition, BMP-2 stimulation induced Dlx5 expression by hypomethylating its promoter. These findings suggest that DNA methylation plays an important role in cell type-specific expression of Dlx5 and Osx.

Effects of Fenofibrate on Adipogenesis in Female C57BL/6J Mice

  • Jeong Sunhyo;Choi Won Chang;Yoon Michung
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Fibrates are a class of hypolipidemic agents whose effects are mediated by activation of a specific transcription factor called the peroxisome proliferator-activated receptor $\alpha\;(PPAR\alpha).\;PPAR\alpha$ regulates the pathways of lipid catabolism such as fatty acid oxidation and the triglyceride metabolism, resulting in the treatment of hyperlipidemia. The decreased levels of plasma triglycerides by fibrates are responsible for hypertrophy and hyperpalsia of adipose cells. To determine whether fenofibrate regulates adipogenesis in female C57BL/6J mice, we measured the effects of fenofibrate on not only body weight, adipose tissue mass and serum triglycerides, but also the histology of adipose tissue and the expression of adipocyte marker genes. Fenofibrate did not inhibit high fat diet-induced increases in body weight, adipose tissue mass and serum triglycerides. Furthermore, fenofibrate did not cause the changes in the size and number of adipocytes and the expression of adipocyte-specific genes such as leptin and $TNF\alpha$. Therefore, this study demonstrates that fenofibrate does not affect adipogenesis in female mice.

  • PDF

Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.497-502
    • /
    • 2014
  • In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

Cloning and characterization of a cDNA encoding a paired box protein, PAX7, from black sea bream, Acanthopagrus schlegelii

  • Choi, Jae Hoon;Han, Dan Hee;Gong, Seung Pyo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.314-322
    • /
    • 2021
  • Paired box protein, PAX7, is a key molecule for the specification, maintenance and skeletal muscle regeneration of muscle satellite cells. In this study, we identified and characterized the cDNA and amino acid sequences of PAX7 from black sea bream (Acanthopagrus schlegelii) via molecular cloning and sequence analysis. A. schlegelii PAX7 cDNA was comprised of 1,524 bp encoding 507 amino acids and multiple sequence alignment analysis of the translated amino acids showed that it contained three domains including paired DNA-binding domain, homeobox domain and OAR domain which were well conserved across various animal species investigated. Pairwise Sequence Alignment indicated that A. schlegelii PAX7 had the same amino acid sequences with that of yellowfin seabream (A. latus) and 99.8% identity and similarity with that of gilt-head bream (Sparus aurata). Molecular phylogenetic analysis confirmed that A. schlegelii PAX7 formed a monophyletic group with those of teleost and most closely related with those of the fish that belong to Sparidae family including A. latus and S. aurata. In the investigation of its tissue specific mRNA expression, the expression was specifically identified in skeletal muscle tissue and a weak expression was also shown in gonad tissue. The cultured cells derived from skeletal muscle tissues expressed PAX7 mRNA at early passage but the expression was not observed after several times of subculture.

Integrin-linked Kinase Functions as a Tumor Promoter in Bladder Transitional Cell Carcinoma

  • Wang, De-Lin;Lan, Jian-Hua;Chen, Liang;Huang, Biao;Li, Zeng;Zhao, Xiu-Min;Ma, Qiang;Sheng, Xia;Li, Wen-Bin;Tang, Wei-Xue
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2799-2806
    • /
    • 2012
  • The aim of this study was to elucidate the role of the integrin-linked kinase (ILK) gene in development of human bladder transitional cell carcinoma (BTCC). Expression of ILK protein and ILK mRNA in 56 cases of human BTCC tissue and in 30 cases of adjacent normal bladder tissue was detected by immunohistochemistry S-P and reverse transcription polymerase chain reaction (RT-PCR), respectively. Four specific miRNA RNAi vectors targeting human ILK were synthesized and transfected into BIU-87 cells by liposome to obtain stable expression cell strains. The influence of ILK on proliferation of BTCC was detected by MTT, FCM on athymic mouse tumorigenesis. The positive rate of ILK protein in BTCC tissue (53.6%) was much higher than adjacent normal bladder tissue (10.0%) (p<0.05). Similarly, expression of ILK mRNA in BTCC tissue ($0.540{\pm}0.083$) was significantly higher than in adjacent normal bladder tissue ($0.492{\pm}0.070$) (p<0.05). MTT showed that the proliferation ability of miRNA-ILK transfected group was clearly decreased (p<0.05), the cell cycle being arrested in G0/G1-S, an tumorigenesis in vivo was also significantly reduced (p<0.05). ILK gene transcription and protein expression may be involved in the development of BTCC, so that ILK might be the new marker for early diagnosis and the new target for gene treatment.