• Title/Summary/Keyword: tissue-engineering

Search Result 1,851, Processing Time 0.028 seconds

Combined Genotype Analyses of Precursor miRNA-196a2 and -499a Variants with Hepatic and Renal Cancer Susceptibility- a Preliminary Study

  • Toraih, Eman A;Fawzy, Manal S;Elgazzaz, Mona G;Hussein, Mohammad H;Shehata, Rasha H;Daoud, Hisham G
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3369-3375
    • /
    • 2016
  • MicroRNAs, a novel class of small non-coding RNAs, are key players in many cellular processes, including cell proliferation, differentiation, invasion and regeneration. Tissue and circulatory microRNAs could serve as useful clinical biomarkers and deregulated expression levels have been observed in various cancers. Gene variants may alter microRNA processing and maturation. Thus, we aimed to investigate the association of MIR-196a2 rs11614913 (C/T), MIR-499a rs3746444 (A/G) polymorphisms and their combination with cancer susceptibility in an Egyptian population. Sixty five renal cell carcinoma (RCC) and 60 hepatocellular carcinoma (HCC) patients and 150 controls were enrolled in the study. They were genotyped using real-time polymerase chain reaction technology. Both $miR-196a2^*T$ and $miR-499a*G$ were associated with RCC risk, but only $miR-196a^*T$ was associated with HCC development. Carriage of the homozygote combinations ($MIR196a2^*TT+MIR499a^*AA$) and ($MIR196a2^*CC+MIR499a^*GG$) was associated with 25 and 48 fold elevation of likelhood to develop RCC, respectively. The miR-196a2 SNP was also linked with larger tumor size in RCC and advanced tumor stage in HCC. miR-196a2 and miR-499a combined genotypes were associated with RCC and HCC. Further functional analysis of SNPs is required to confirm relationships between genotypes and phenotypes.

Overexpression of Hyoscyamine 6${\beta}$-Hydroxylase (h6h) Gene and Enhanced Production of Tropane Alkaloids in Scopolia parviflora Hairy Root Lines

  • KANG, YOUNG-MIN;LEE, OK-SUN;JUNG, HEE-YOUNG;KANG, SEUNG-MI;LEE, BYUNG-HYUN;CHANDRAKANT KARIGAR;THEERTHA PRASAD;BAHK, JUNG-DONG;CHOI, MYUNG-SUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • The hyoscyamine 6${\beta}$-hydroxylase (h6h) gene was introduced into the genome of Scopolia parviflora through the Agrobacterium rhizogenes binary vector system. The enzyme was expressed ally and tissue specific selectively in roots, resulting in five transgenic hairy root lines. The presence of the h6h gene in kanamycin-resistant hairy roots and its overexpression were confirmed by polymerase chain reaction (PCR), Northern blotting, and Western blotting, respectively. In the transgenic hairy root lines which constitutively expressed the H6H enzyme, hyoscyamine and scopolamine accumulated in high concentration. Among the transgenic hairy root lines that expressed the H6H enzyme, only two were more productive. The levels of tropane alkaloids in transgenic hairy root varied greatly: The best transgenic line (#5) contained 8.12 mg of scopolamine per g dry weight, which produced the compound three times more than wild-type root. These results suggest a possibility of improving the yield of tropane alkaloids in hairy root lines by genetic and metabolic engineering.

Feasibility Study of Robotics-based Patient Immobilization Device for Real-time Motion Compensation

  • Chung, Hyekyun;Cho, Seungryong;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2016
  • Intrafractional motion of patients, such as respiratory motion during radiation treatment, is an important issue in image-guided radiotherapy. The accuracy of the radiation treatment decreases as the motion range increases. We developed a control system for a robotic patient immobilization system that enables to reduce the range of tumor motion by compensating the tumor motion. Fusion technology, combining robotics and mechatronics, was developed and applied in this study. First, a small-sized prototype was established for use with an industrial miniature robot. The patient immobilization system consisted of an optical tracking system, a robotic couch, a robot controller, and a control program for managing the system components. A multi speed and position control mechanism with three degrees of freedom was designed. The parameters for operating the control system, such as the coordinate transformation parameters and calibration parameters, were measured and evaluated for a prototype device. After developing the control system using the prototype device, a feasibility test on a full-scale patient immobilization system was performed, using a large industrial robot and couch. The performances of both the prototype device and the realistic device were evaluated using a respiratory motion phantom, for several patterns of respiratory motion. For all patterns of motion, the root mean squared error of the corresponding detected motion trajectories were reduced by more than 40%. The proposed system improves the accuracy of the radiation dose delivered to the target and reduces the unwanted irradiation of normal tissue.

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

An Experimental Study of the Synthetic Sinc Wave in Ultrasonic Imaging (초음파 의료 영상에서 합성 Sinc 음장 집속방법의 실험적 고찰)

  • 이광주;정목근
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.243-251
    • /
    • 2002
  • Synthetic zinc wave employs Pulsed plane wave as transmit beam with linear time delay curve. The received echoes in different transmit directions at different transmit times are superposed at imaging Points with Proper time delay compensation using synthetic focusing scheme. This scheme. which uses full aperture in transmit, obtains a high SNR image, and also features high lateral resolution by using two way dynamic focusing at all imaging depths. In this Paper, we consider the Problems in realization of synthetic zinc wave. Also. we have applied the scheme to obtain phantom and in-vivo images using a linear array of 5 MHz. In phantom test. experimental images show high resolution over a more extended imaging depth than conventional fixed Point transmit and receive dynamic focusing schemes In-vivo images show that the resolution could not overcome conventional focusing systems because of motion blurring and(or) aberration of tissue. but the frame rate tan be increased by a factor of more than 5 compared to conventional focusing schemes. with competitive resolution at all imaging depths .

Fundamental Process Development for Bio-degradable Polymer Deposition and Fabrication of Post Surgical Anti-adhesion Barrier Using the Process (생분해성 고분자 용착을 위한 기반 공정 개발과 이를 이용한 수술 후 유착 방지막의 제작)

  • Park, Suk-Hee;Kim, Hyo-Chan;Kim, Taek-Gyoung;Jung, Hyun-Jeong;Park, Tae-Gwan;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.138-146
    • /
    • 2007
  • Some biodegradable polymers and other materials such as hydrogels have shown the promising potential for surgical applications. Post surgical adhesion caused by the natural consequence of surgical wound healing results in repeated surgery and harmful effects. Recently, scientists have developed absorbable anti-adhesion barriers that can protect a tissue from adhesion in case they are in use; however, they are dissolved when no longer needed. Although these approaches have been attempted to fulfill the criteria for adhesion prevention, none can perfectly prevent adhesions in all situations. Overall, we developed a new method to fabricate an anti-adhesion membrane using biodegradable polymer and hydrogel. It employed a highly accurate three-dimensional positioning system with pressure-controlled syringe to deposit biopolymer solution. The pressure-activated microsyringe was equipped with fine-bore nozzles of various inner-diameters. This process allowed that inner and outer shapes could be controlled arbitrarily when it was applied to a surgical region with arbitrary shapes. In order to fulfill the properties of the ideal barriers f3r preventing postoperative adhesion, we adopted the pre-mentioned method combined with surface modification with the hydrogel coating by which anti-adhesion property was improved.

Shoot multiplication kinetics and hyperhydric status of regenerated shoots of gladiolus in agar-solidified and matrix-supported liquid cultures

  • Gupta, S. Dutta;Prasad, V.S.S.
    • Plant Biotechnology Reports
    • /
    • v.4 no.1
    • /
    • pp.85-94
    • /
    • 2010
  • In vitro shoot regeneration of gladiolus in three different culture systems, viz., semi-solid agar (AS), membrane raft (MR), and duroplast foam liquid (DF) cultures was evaluated following the kinetics of shoot multiplication and hyperhydricity at optimized growth regulator combinations. Compared to the AS system, matrixsupported liquid cultures enhanced shoot multiplication. The peak of shoot multiplication rate was attained at 18 days of incubation in the MR and DF systems, whereas the maximum rate in the AS system was attained at 21 days. An early decline in acceleration trend was observed in liquid cultures than the AS culture. The hyperhydric status of the regenerated shoots in the different culture systems was assessed in terms of stomatal attributes and antioxidative status. Stomatal behavior appeared to be normal in the AS and MR systems. However, structural anomaly of stomata such as large, round shaped guard cells with damage in bordering regions of stomatal pores was pronounced in the DF system along with a relatively higher $K^+$ ion concentration than in the AS and MR systems. Antioxidative status of regenerated shoots was comparable in the AS and MR systems, while a higher incidence of oxidative damages of lipid membrane as evidenced from malondialdehyde and ascorbate content was observed in the DF system. Higher oxidative stress in the DF system was also apparent by elevated activities of superoxide dismutase, ascorbate peroxidase, and catalase. Among the three culture systems, liquid culture with MR resulted in maximum shoot multiplication with little or no symptoms of hyperhydricity. Shoots in the DF system were more prone to hyperhydricity than those in the AS and MR systems. The use of matrix support such as membrane raft as an interface between liquid medium and propagating tissue could be an effective means for rapid and efficient mass propagation with little or no symptoms of hyperhydricity.

Virucidal efficacy of a fumigant containing orth-phenylphenol against classical swine fever virus and porcine reproductive and respiratory syndrome virus (Ortho-phenylphenol을 주성분으로 하는 훈증소독제의 돼지열병바이러스와 돼지생식기호흡기증후군바이러스에 대한 살바이러스 효과)

  • Cha, Chun-Nam;Park, Eun-Kee;Jung, Ji-Youn;Yoo, Chang-Yeul;Kim, Suk;Lee, Hu-Jang
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.2
    • /
    • pp.117-124
    • /
    • 2016
  • In this study, the virucidal efficacy of a fumigant containing 20% ortho-phenylphenol against classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV) was examined. After each carrier deposited with CSFV and PRRSV suspensions was exposed to the fumigant in a $25-m^3$ test room for 15 h, all carriers were neutralized and diluted, and each diluted suspension was inoculated into each proper cell line. After incubation, CSFV and PRRSV viability in each cell line was examined and 50% tissue culture infectious dose $(TCID_{50})/mL$ was calculated. In the results, the concentration of viable virus in all of pathogen control-carriers was more than $2{\times}10^5TCID_{50}/mL$, and there were no cytotoxicity in all of toxicity control-carriers. In addition, the fumigant inactivated ${\geq}4.8{\log}_{10}(TCID_{50}/mL)$ of both CSFV and PRRSV. These findings will be useful for preventing the spread of CSFV and PRRSV infection.

의료용재료의 최근 개발현황

  • 김영하
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 1989
  • The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan`s method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMf signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements.

  • PDF

Methylation of the Mouse Dlx5 and Osx Gene Promoters Regulates Cell Type-specific Gene Expression

  • Lee, Ji Yun;Lee, Yu Mi;Kim, Mi Jin;Choi, Je Yong;Park, Eui Kyun;Kim, Shin Yoon;Lee, Sam Poong;Yang, Jae Sup;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.182-188
    • /
    • 2006
  • Dlx5 and Osx are master regulatory proteins essential for initiating the cascade leading to osteoblast differentiation in mammals, but the mechanism of osteoblast-specific expression is not fully understood. DNA methylation at CpG sequences is involved in tissue and cell type-specific gene expression. We investigated the methylation status of Dlx5 and Osx in osteogenic and nonosteogenic cell lines by methylationspecific PCR (MSP). The CpG dinucleotides of the Dlx5 and Osx promoter regions were unmethylated in osteogenic cell lines transcribing these genes but methylated in nonosteogenic cell lines. Treatment of C2C12 cells with 5-AzadC induced dose- and timedependent expression of Dlx5 and Osx mRNA by demethylating the corresponding promoters. Furthermore the mRNAs for the osteoblast markers ALP and OC, which were undetectable in untreated cells, gradually increased after 5-AzadC treatment. In addition, BMP-2 stimulation induced Dlx5 expression by hypomethylating its promoter. These findings suggest that DNA methylation plays an important role in cell type-specific expression of Dlx5 and Osx.