• 제목/요약/키워드: tissue specific proteins

검색결과 155건 처리시간 0.028초

렙틴 저항성의 개선 (Improvement of Leptin Resistance)

  • 김용운
    • Journal of Yeungnam Medical Science
    • /
    • 제30권1호
    • /
    • pp.4-9
    • /
    • 2013
  • Leptin, a 16-kDa cytokine, is secreted by adipose tissue in response to the surplus of fat store. Thereby, the brain is informed about the body's energy status. In the hypothalamus, leptin triggers specific neuronal subpopulations (e.g., POMC and NPY neurons) and activates several intracellular signaling events, including the JAK/STAT, MAPK, PI3K, and mTOR pathway, which eventually translates into decreased food intake and increased energy expenditure. Leptin signal is inhibited by a feedback inhibitory pathway mediated by SOCS3. PTP1B involves another inhibitory pathway of leptin. Leptin potently promotes fat mass loss and body weight reduction in lean subjects. However, it is not widely used in the clinical field because of leptin resistance, which is a common feature of obesity characterized by hyperleptinemia and the failure of exogenous leptin administration to provide therapeutic benefit in rodents and humans. The potential mechanisms of leptin resistance include the following: 1) increases in circulating leptin-binding proteins, 2) reduced transport of leptin across the blood-brain barrier, 3) decreased leptin receptor-B (LRB), and/or 4) the provocation of processes that diminish cellular leptin signaling (inflammation, endoplasmic reticulum stress, feedback inhibition, etc.). Thus, interference of the cellular mechanisms that attenuate leptin signaling improves leptin action in cells and animal models, suggesting the potential utility of these processes as points of therapeutic intervention. Various experimental trials and compounds that improve leptin resistance are introduced in this paper.

후두에 발생한 악성 섬유성 조직구종 (A Case of Malignant Fibrous Histiocytoma of the Larynx)

  • 구용철;황치상;김기정;최홍식
    • 대한후두음성언어의학회지
    • /
    • 제22권2호
    • /
    • pp.159-161
    • /
    • 2011
  • Malignant fibrous histiocytoma is one of the rare types of larynx tumor. The most common sites of the tumor are limbs, trunk, and retroperitoneal space, but tumor localization within head and neck are very rare. It is built of histiocytes, fibroblasts and multinuclear giant cells. A diagnosis of the tumor includes microscopic and immunohistologic examination with identification of specific tissue markers and intermediate filaments of proteins. This disease has been treated by several methods combining radical surgery, radiotherapy, and chemotherapy, but the prognosis is poor. We present 74-year-old Asian man with dysphonia for 2 years. The tumor of the larynx was examined on laryngoscopy. The radical surgery rendered the final pathological diagnosis, confirmed histologically and immunohistochemically as malignant fibrous histiocytoma. This tumor was treated with laser cordectomy followed by radiotherapy. 3.5 year's observation of the patient didn't either show any signs of recurrence or dysphonia.

  • PDF

Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies

  • Adibhatla, Rao Muralikrishna;Hatcher, J.F.
    • BMB Reports
    • /
    • 제41권8호
    • /
    • pp.560-567
    • /
    • 2008
  • The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase $A_2$ ($PLA_2$), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of $PLA_2$ to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of $PLA_2$, the diverse sources of ROS, and the lack of specific $PLA_2$ inhibitors. In this review, we summarize the role of $PLA_2$ in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.

C2C12 골격근 세포에서 백출의 분화 조절 효능 (Effect of Root of Atractylodes macrocephala Koidzumi on Myogenesis in C2C12 Cells)

  • 송미영
    • 한방비만학회지
    • /
    • 제15권1호
    • /
    • pp.38-44
    • /
    • 2015
  • Objective: Skeletal muscle is a crucial tissue from the perspectives of mitochondrial dysfunction and insulin resistance, it is formed by myogenesis which is dynamic multistep process to be myotubes. The authors could found that root of Atractylodes macrocephala Koidzumi (Atractylodis Rhizoma Alba, ARA) enhanced glucose and lipid metabolism in C2C12 myotubes via mitochondrial regulation. However its action in myogenesis process is not known. The aim of this work was the study of ARA on proliferation, differentiation and hypertrophy in C2C12 cells. Methods: To study proliferation phase, cells were incubated in growth medium with or without ARA (0.2 or 1.0 mg/ml) for 24 hours. To examine differentiation, at 70% confluence, cells were transferred in differentiation medium both with/without ARA (0.2 or 1.0 mg/ml) for 96 hours. And after 72 hours of differentiation, cells were treated with or without ARA (0.2 or 1.0 mg/ml) for 24 hours, the genesis of hypertrophy in myotubes were analyzed. Results: In proliferation phase, ARA could make difference in morphologic examination. In differentiation phase, it also made morphologic difference furthermore ARA (1.0 mg/ml) increased mRNA expressions of Myogenic regulatory factors and muscle-specific proteins synthesis. In late differentiation, ARA induced hypertrophic morphological changes in neo-formed myotubes. Conclusions: ARA might control cell cycle promoting myogenesis and hypertrophy in C2C12 cells.

경구투여한 V. vulnificus 백신의 면역원성 및 감염방어효능 (Immunogenicity and Protective Efficacy of an Oral Vaccine against Vibrio vulnificus Infection)

  • 이나경;정상보;안보영;김영지;이윤하
    • Biomolecules & Therapeutics
    • /
    • 제6권2호
    • /
    • pp.191-198
    • /
    • 1998
  • Vsrio vulnificus is an estuarine gram-negative human pathogen that affects people with chronic hepatitis, alcoholic cirrhosis, diabetes mellitus or other underlying diseases. V. vulnificus infection is mediated primarily by consumption of raw fish or by exposure of pre-existing wounds to seawater, causing permanent tissue damages or fatal septic shock. We have been developing a vaccine against V. vulnificus composed of whole cell Iysate of a V. vulnificus O-antigen serotype 4 strain. Oral administration of the V. vulnificus;oral vaccine;immunogenicity;protective efficacy vaccine elicited a high serum antibody response in rabbits. The induced antibodies were reactive not only to the homologous strain but also to heterologous O-antigen serotype strains, indicating cross-reactivities among serotypes. Western blot analysis revealed that the antibodies are mainly specific for outer membrane proteins (OMPs) and reacted equally well with OMPs purified from 9 O-antigen serotypes. The rabbit antisera showed opsonophagocytic killing activity against heterologous strains as well as the homologous strain. Passively transferred rabbit antisera into mice were protective against a lethal V. vulnificus infection. These data demonstrate that oral administration of the V. vulnificus vaccine induced a systemic antibody response which had a protective efficacy against V. vulnificus infections, suggesting that this vaccine preparation could be used to develop an oral vaccine against V. vulnificus.

  • PDF

Calcium Homeostasis and Regulation of Calbindin-D9k by Glucocorticoids and Vitamin D as Bioactive Molecules

  • Choi, Kyung-Chul;Jeung, Eui-Bae
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.125-132
    • /
    • 2009
  • Calbindin-$D_{9k}$ (CaBP-9k), a cytosolic calcium-binding protein, is expressed in a variety of tissues, i.e., the duodenum, uterus, placenta, kidney and pituitary gland. Duodenal CaBP-9k is involved in intestinal calcium absorption, and is regulated at transcriptional and post-transcriptional levels by 1,25-dihydroxyvitamin D3, the hormonal form of vitamin D, and glucocorticoids (GCs). Uterine CaBP-9k has been implicated in the regulation of myometrial action(s) through modulation of intracellular calcium, and steroid hormones appear to be the main regulators in its uterine and placental regulation. Because phenotypes of CaBP-9k-null mice appear to be normal, other calcium-transporter genes may compensate for its gene deletion and physiological function in knockout mice. Previous studies indicate that CaBP-9k may be controlled in a tissue-specific fashion. In this review, we summarize the current information on calcium homeostasis related to CaBP-9k gene regulation by GCs, vitamin D and its receptors, and its molecular regulatory mechanism. In addition, we present related data from our current research.

BC200 RNA: An Emerging Therapeutic Target and Diagnostic Marker for Human Cancer

  • Shin, Heegwon;Kim, Youngmi;Kim, Meehyein;Lee, Younghoon
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.993-999
    • /
    • 2018
  • One of the most interesting findings from genome-wide expression analysis is that a considerable amount of noncoding RNA (ncRNA) is present in the cell. Recent studies have identified diverse biological functions of ncRNAs, which are expressed in a much wider array of forms than proteins. Certain ncRNAs associated with diseases, in particular, have attracted research attention as novel therapeutic targets and diagnostic markers. BC200 RNA, a 200-nucleotide ncRNA originally identified as a neuron-specific transcript, is abnormally over-expressed in several types of cancer tissue. A number of recent studies have suggested mechanisms by which abnormal expression of BC200 RNA contributes to the development of cancer. In this article, we first provide a brief review of a recent progress in identifying functions of BC200 RNA in cancer cells, and then offer examples of other ncRNAs as new therapeutic targets and diagnostic markers for human cancer. Finally, we discuss future directions of studies on BC200 RNA for new cancer treatments.

노화 시계를 이용한 알츠하이머병 환자의 후성유전학적 연령 예측 (Epigenetic Age Prediction of Alzheimer's Disease Patients Using the Aging Clock)

  • 김진영;조광원
    • 통합자연과학논문집
    • /
    • 제16권2호
    • /
    • pp.61-67
    • /
    • 2023
  • Human body ages differently due to environmental, genetic and pathological factors. DNA methylation patterns also differs depending on various factors such as aging and several other diseases. The aging clock model, which uses these differences to predict age, analyzes DNA methylation patterns, recognizes age-specific patterns, predicts age, and grasps the speed and degree of aging. Aging occurs in everyone and causes various problems such as deterioration of physical ability and complications. Alzheimer's disease is a disease associated with aging and the most common brain degenerative disease. This disease causes various cognitive functions disabilities such as dementia and impaired judgment to motor functions, making daily life impossible. It has been reported that the incidence and progression of this disease increase with aging, and that increased phosphorylation of Aβ and tau proteins, which are overexpressed in this disease and accelerates epigenetic aging. It has also been reported that DNA methylation is significantly increased in the hippocampus and entorhinal cortex of Alzheimer's disease patients. Therefore, we calculated the biological age using the Epi clock, a pan-tissue aging clock model, and confirmed that the epigenetic age of patients suffering from Alzheimer's disease is lower than their actual age. Also, it was confirmed to slow down aging.

Histone deacetylase family in balloon flower (Platycodon grandiflorus): Genome-wide identification and expression analysis under waterlogging stress

  • Min-A Ahn;Ga Hyeon Son;Tae Kyung Hyun
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.232-238
    • /
    • 2023
  • Histone deacetylases (HDACs) play a pivotal role in epigenetic regulation, affecting the structure of chromatin and gene expression across different stages of plant development and in response to environmental stresses. Although the role of HDACs in Arabidopsis and rice has been focused on in extensive research, the role of the HDAC gene family in various medicinal plants remains unclear. In the genome of the balloon flower (Platycodon grandiflorus), we identified 10 putative P. grandiflorus HDAC (PlgHDAC) proteins, which were classified into the three families (RPD3/HDA1, SIR2, and HD2 HDAC families) based on their domain compositions. These HDACs were predicted to be localized in various cellular compartments, indicating that they have diverse functions. In addition, the tissue-specific expression profiles of PlgHDACs differed across different plant tissues, indicating that they are involved in various developmental processes. Furthermore, the expression levels of all PlgHDACs were upregulated in leaves after waterlogging treatment, implying their potential role in coping with waterlogging-induced stress. Overall, our findings provide a comprehensive foundation for further research into the epigenetic regulation of PlgHDACs, and particularly, on their functions in response to environmental stresses such as waterlogging. Understanding the roles of these HDACs in the development and stress responses of balloon flower could have significant implications for improving crop yield and the quality of this important medicinal plant.

미나리에서 비배발생캘러스와 배발생캘러스간의 분화능력 및 해부학적, 생화학적 특성비교 (Totipotential, Morphological, Biochemical Comparisons between Nonembryogenic Callus and Embryogenic Callus in Water Dropwort(Oenanthe stolonifera DC))

  • 빈철구;김병동
    • 식물조직배양학회지
    • /
    • 제24권3호
    • /
    • pp.167-173
    • /
    • 1997
  • The embryogenic callus (EC), from which somatic embryos could be induced, was compared with nonembryogenic callus(NE) to study the origin and features of totipotent cell in water dropwort (Oenanthe stolonifera DC). To induce and maintain of EC and the NE, meristematic stem and immature floret were inoculated in MS media supplemented with 1 mg/L 2,4-D, and with 2.5 mg/L NAA and 5mg/L BA, respectively, The EC was not induced from the NE even after subculturing in MS medium supplemented with 1 mg/L 2,4-D. Plantlets were not regenerated from the NE in hormone-free medium. In histochemical comparison of the EC with the NE by light microscopy, the EC had smaller cells in size, dense cytoplasm, and more starch granules of cells compared to the NE cells. The cell from the EC, as observed by transmission electron microscopy, had smaller vaculoes, well developed ribosomes, mitochondria, and endoplasmic reticulum, whereas the cells from the NE had larger vacuoles and underdeveloped organelles. In protein pattern from NE, EC and Somatic embryo (SE), as analyzed by SDS polyacrylamide gel electrophoresis, different proteins specific for tissue were observed: 17 and 28 KD for NE, 50, 52, 57, 66, 68 KD for EC and 20 KD for SE. DNA polymorphism was also observed between EC and NE as analyzed by RAPD (randomly amplified polymorphic DNA) method. The origin of totipotent stem cell and the relationship between irreversible genomic change arose in differentiation and the loss of totipotency in plant were discussed.

  • PDF