• Title/Summary/Keyword: tissue specific expression

Search Result 601, Processing Time 0.029 seconds

Toxicogenomics approaches in Toxicological Pathology

  • Shirai, Tomoyuki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.116-116
    • /
    • 2002
  • It is believed that cell and/or tissue toxicity is resulted from alterations in expression of many genes in response to environmental stresses or toxicants. New technology, such as DNA microarray analysis, can measure the expression of thousands of genes at a time providing the potential to accelerate discovery of toxicant pathways and specific gene targets.(omitted)

  • PDF

Construction of Artificial Epithelial Tissues Prepared from Human Normal Fibroblasts and C9 Cervical Epithelial Cancer Cells Carrying Human Papillomavirus Type 18 Genes

  • Eun Kyung Yang;Seu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • One cervical cancer cell line, C9, carrying human papillomavirus type 18 (HPV18) genes that is one of the major etiologic concoviruses for cervical cancer was characterized. This cell line was further characterized for its capacity related to the epithelial cell proliferation, stratification and differentiation in reconstituted artificial epithelial tissue. The in vitro construction of three dimensional artificial cervical opithelial tissue has been engineered using C9 epithelial cancer cells, human foreskin fibroblasts and a matrix made of type I collagen by organotypic culture of epithelial cells. The morphology of paraffin embedded artificial tissue was examined by histochemical staining. The artificial epithelial tissues were well developed having multilayer. However, the tissue morphology was similar to the cervical tissus having displasia induced by HPV infection. The characteristics of the artificial tissues were examined by determinining the expression of specific marker proteins. In the C9 derived artificial tissues, the expression of EGF receptor, as epithelial proliferation marker proteins for stratum basale was observed up to the stratum spinosum. Another epithelial proliferation marker for stratum spinosum, cytokerations 5/6/18, were observed well over the stratum spinosum. For the differentiation markers, the expression of involucrin and filaggrin were observed while the terminal differentiation marker, cytokeratins 10/13 was not detected at all. Therefore the reconstituted artificial epithelial tissues expressed the same types of differentiation marker proteins that are expressed in normal human cervical epithelial tissues but lacked the final differentiation capacity representing characteristics of C9 cell line as a cancer tissue devived cell line. Expression of HPV18 E6 oncoprotein was also observed in this artifical cervical opithelial tissue though the intensity of the staining was weak. Thus this artificial epithelial tissue could be used as a useful model system to examine the relationship between HPV-induced cervical oncogenesis and epithelial cell differentiation.

  • PDF

Transactivators for the Odontoblast-specific Gene Targeting

  • Chung, Kyung-Chul;Kim, Tak-Heun;Yang, Yeon-Mee;Baek, Jin-A;Ko, Seung-O;Cho, Eui-Sic
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • Dentin, a major component of teeth, is formed by odontoblasts which produce the dentin matrix beneath the dental epithelium and induce the mineralization of dentin. To date, the biochemical properties of dentin matrix proteins have been well characterized, but upstream regulators of these proteins are not yet well known. Recently in this regard, several transcription factors have been identified as potential regulators of matrix proteins. Most transcription factors are generally involved in diverse biological processes and it is essential to identify those that are odontoblast-specific transactivators to further understand the process of dentin formation. We thus analyzed the expression pattern of dentin matrix proteins and the activities of established transactivators containing a Cre-locus. Expression analyses using in situ hybridization showed that dentin matrix proteins are sequentially expressed in differentiating odontoblasts, including type-I collagen, Dmp-1 and Dspp. The activities of the transactivators were evaluated using ${\beta}$-galactosidase following the generation of double transgenic mice with each transactivator and the ROSA26R reporter line. The ${\beta}$-galactosidase activity of each transactivator paralled the expression of the matrix proteins. These results thus showed that these transactivators could be utilized for odontoblastspecific conditional gene targeting. In addition, time- and tissue-specific conditional gene targeting might also be achieved using a combination of these transactivators. Odontoblast-specific conditional gene targeting with these transactivators will likely also provide new insights into the molecular mechanisms underlying dentin formation.

Genes expression monitoring using cDNA microarray: Protocol and Application

  • Muramatsu Masa-aki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2000.11a
    • /
    • pp.31-41
    • /
    • 2000
  • The major issue in the post genome sequencing era is determination of gene expression patterns in variety of biological systems. A microarray system is a powerful technology for analyzing the expression profile of thousands of genes at one experiment. In this study, we constructed cDNA microarray which carries 2,304 cDNAS derived from oligo-capped mouse cDNA library. Using this hand-made microarray we determined gene expression in various biological systems. To determine tissue specific genes, we compared Nine genes were highly-expressed in adult mouse brain compared to kidney, liver, and skeletal muscle. Tissue distribution analysis using DNA microarray extracted 9 genes that were predominantly expressed in the brain. A database search showed that five of the 9 genes, MBP, SC1, HiAT3, S100 protein-beta, and SNAP25, were previously known to be expressed at high level in the brain and in the nervous system. One gene was highly sequence similar to rat S-Rex-s/human NSP-C, suggesting that the gene is a mouse homologue. The remaining three genes did not match to known genes in the GenBank/EMBL database, indicating that these are novel genes highly-expressed in the brain. Our DNA microarray was also used to detect differentiation specific genes, hormone dependent genes, and transcription-factor-induced genes. We conclude that DNA microarray is an excellent tool for identifying differentially expressed genes.

  • PDF

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.

Age-dependent expression of ion channel genes in rat

  • Sung-Cherl Jung;Tong Zhou;Eun-A Ko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.85-94
    • /
    • 2023
  • Ion channels regulate a large number of cellular functions and their functional role in many diseases makes them potential therapeutic targets. Given their diverse distribution across multiple organs, the roles of ion channels, particularly in age-associated transcriptomic changes in specific organs, are yet to be fully revealed. Using RNA-seq data, we investigated the rat transcriptomic profiles of ion channel genes across 11 organs/tissues and 4 developmental stages in both sexes of Fischer 344 rats and identify tissue-specific and age-dependent changes in ion channel gene expression. Organ-enriched ion channel genes were identified. In particular, the brain showed higher tissue-specificity of ion channel genes, including Gabrd, Gabra6, Gabrg2, Grin2a, and Grin2b. Notably, age-dependent changes in ion channel gene expression were prominently observed in the thymus, including in Aqp1, Clcn4, Hvcn1, Itpr1, Kcng2, Kcnj11, Kcnn3, and Trpm2. Our comprehensive study of ion channel gene expression will serve as a primary resource for biological studies of aging-related diseases caused by abnormal ion channel functions.

Proteomic Analysis of Colonic Mucosal Tissue from Tuberculous and Ulcerative Colitis Patients

  • Kwon, Seong-Chun;Won, Kyung-Jong;Jung, Seoung-Hyo;Lee, Kang-Pa;Lee, Dong-Youb;Park, Eun-Seok;Kim, Bok-Yung;Cheon, Gab-Jin;Han, Koon-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.193-198
    • /
    • 2012
  • Changes in the expression profiles of specific proteins leads to serious human diseases, including colitis. The proteomic changes related to colitis and the differential expression between tuberculous (TC) and ulcerative colitis (UC) in colon tissue from colitis patients has not been defined. We therefore performed a proteomic analysis of human TC and UC mucosal tissue. Total protein was obtained from the colon mucosal tissue of normal, TC, and UC patients, and resolved by 2-dimensional electrophoresis (2-DE). The results were analyzed with PDQuest using silver staining. We used matrix-assisted laser desorption ionization time-of-flight/time-of-flight spectrometry (MALDI TOF/TOF) to identify proteins differentially expressed in TC and UC. Of the over 1,000 proteins isolated, three in TC tissue and two in UC tissue displayed altered expression when compared to normal tissue. Moreover, two proteins were differentially expressed in a comparative analysis between TC and UC. These were identified as mutant ${\beta}$-actin, ${\alpha}$-enolase and Charcot-Leyden crystal protein. In particular, the expression of ${\alpha}$-enolase was significantly greater in TC compared with normal tissue, but decreased in comparison to UC, implying that ${\alpha}$-enolase may represent a biomarker for differential diagnosis of TC and UC. This study therefore provides a valuable resource for the molecular and diagnostic analysis of human colitis.

Comparative Characteristics of Three Human Embryonic Stem Cell Lines

  • Lee, Jung Bok;Kim, Jin Mee;Kim, Sun Jong;Park, Jong Hyuk;Hong, Seok Ho;Roh, Sung Il;Kim, Moon Kyoo;Yoon, Hyun Soo
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Human embryonic stem (hES) cells have unique features including unlimited growth capacity, expression of specific markers, normal karyotypes and an ability to differentiate. Many investigators have tried to use hES cells for cell-based therapy, but there is little information about the properties of available hES cell lines. We compared the characteristics of three hES cell lines. The expression of SSEA-1, -3, -4, and APase, was examined by immunocytochemistry, and Oct-4 expression was analyzed by RT-PCR. Differentiation of the hES cells in vitro and in vivo led to the formation of embryoid bodies (EBs) or teratomas. We examined the expression of tissue-specific markers in the differentiated cells by semiquantitative RT-PCR, and the ability of each hES cell line to proliferate was measured by flow cytometry of DNA content and ELISA. The three hES cell lines were similar in morphology, marker expression, and teratoma formation. However there were significant differences (P < 0.05) between the differentiated cells formed by the different cell lines in levels of expression of tissue-specific markers such as renin, kallikrein, Glut-2, ${\beta}-$ and ${\delta}-globin$, albumin, and ${\alpha}1-antitrypsin$ (${\alpha}1-AT$). The hES cell lines also differed in proliferative activity. Our observations should be useful in basic and clinical hES cell research.

Fus Expression Patterns in Developing Tooth

  • Kim, Eun-Jung;Lee, Jong-Min;Jung, Han-Sung
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • Recently, the RNA/DNA-binding protein FUS, Fused in sarcoma, was shown to play a role in growth, differentiation, and morphogenesis in vertebrates. Because little is known about Fus, we investigated its expression pattern in murine tooth development. In situ hybridization of mouse mandibles at specific developmental stages was performed with a DIG-labeled RNA probe. During early tooth development, Fus was detected in the dental epithelium and dental mesenchyme at 11 days postcoitum (dpc) and 12 dpc. From 14 dpc, Fus was strongly expressed in the dental papilla and the cervical loop of the dental epithelium. At postnatal day 4 (PN4), Fus expression was observed in the odontoblasts, ameloblasts, the proliferation zone of the pulp, and the cervical loop. At PN14, the expression pattern of Fus was found to be maintained in the odontoblasts and the proliferation zone of the pulp. Furthermore, Fus expression was especially strong in the Hertwig's epithelial root sheath (HERS). Therefore, this study suggests that Fus may play a role in the HERS during root development.