• Title/Summary/Keyword: time-varying parameter

Search Result 373, Processing Time 0.021 seconds

Atmospheric Turbulence Simulator for Adaptive Optics Evaluation on an Optical Test Bench

  • Lee, Jun Ho;Shin, Sunmy;Park, Gyu Nam;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However, this type of prediction based on various assumptions can occasionally produce outcomes which are far from actual experience. Thus, every adaptive optics system is desired to be tested in a closed loop on an optical test bench before its application to a telescope. In the close-loop test bench, we need an atmospheric simulator that simulates atmospheric disturbances, mostly in phase, in terms of spatial and temporal behavior. We report the development of an atmospheric turbulence simulator consisting of two point sources, a commercially available deformable mirror with a $12{\times}12$ actuator array, and two random phase plates. The simulator generates an atmospherically distorted single or binary star with varying stellar magnitudes and angular separations. We conduct a simulation of a binary star by optically combining two point sources mounted on independent precision stages. The light intensity of each source (an LED with a pin hole) is adjustable to the corresponding stellar magnitude, while its angular separation is precisely adjusted by moving the corresponding stage. First, the atmospheric phase disturbance at a single instance, i.e., a phase screen, is generated via a computer simulation based on the thin-layer Kolmogorov atmospheric model and its temporal evolution is predicted based on the frozen flow hypothesis. The deformable mirror is then continuously best-fitted to the time-sequenced phase screens based on the least square method. Similarly, we also implement another simulation by rotating two random phase plates which were manufactured to have atmospheric-disturbance-like residual aberrations. This later method is limited in its ability to simulate atmospheric disturbances, but it is easy and inexpensive to implement. With these two methods, individually or in unison, we can simulate typical atmospheric disturbances observed at the Bohyun Observatory in South Korea, which corresponds to an area from 7 to 15 cm with regard to the Fried parameter at a telescope pupil plane of 500 nm.

Dynamic Analysis on Electricity Demands for the Steel Industry in Korea: Comparison between SMEs and Large Firms (우리나라 철강산업의 전력수요에 대한 동태 분석: 중소기업과 대기업 간 비교)

  • Li, Dmitriy;Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.29 no.4
    • /
    • pp.499-520
    • /
    • 2020
  • Input ratio of electricity to other production inputs in the Korean manufacturing sector has been higher than for the other OECD countries. In addition, electricity prices in Korea has been relatively lower than the average of OECD countries. Moreover, electricity sector is responsible for most CO2 emissions in Korea as coal and natural gas account 41.9% and 26.8% of electricity production as of 2018. Therefore, it looks inevitable to raise the electricity tariff for the manufacturing sector in Korea, but there is a concern that increase in the electricity tariff might affect small and medium enterprises (SMEs) more than large firms. This study estimates electricity demand's price and output elasticities for large firms and SMEs in steel industry by employing a time varying parameter model (Kalman filter). The analysis shows that changes in output levels regardless of firms' size affect electricity demands more significantly than do changes in electricity prices. Second, large firms have higher variances for both price and output elasticities of electricity demand. Third, large firms have higher price elasticity but lower output elasticity of electricity demand relative to SMEs. Policy implications are suggested in association with how to reduce electricity demands in the energy-intensive industry.

Prediction of Nitrate Contamination of Groundwater in the Northern Nonsan area Using Multiple Regression Analysis (다중 회귀 분석을 이용한 논산 북부 지역 지하수의 질산성 질소 오염 예측)

  • Kim, Eun-Young;Koh, Dong-Chan;Ko, Kyung-Seok;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.57-73
    • /
    • 2008
  • Nitrate concentrations were measured up to 49 mg/L (as $NO_3$-N) and 22% of the samples exceeded drinking water standard in shallow and bedrock groundwater of the northern Nonsan area. Nitrate concentrations showed a significant difference among land use groups. To predict nitrate concentration in groundwater, multiple regression analysis was carried out using hydrogeologic parameters of soil media, topography and land use which were categorized as several groups, well depth and altitude, and field parameters of temperature, pH, DO and EC. Hydrogeologic parameters were quantified as area proportions of each category within circular buffers centering at wells. Regression was performed to all the combination of variables and the most relevant model was selected based on adjusted coefficient of determination (Adj. $R^2$). Regression using hydrogelogic parameters with varying buffer radii show highest Adj. $R^2$ at 50m and 300m for shallow and bedrock groundwater, respectively. Shallow groundwater has higher Adj. $R^2$ than bedrock groundwater indicating higher susceptibility to hydrogeologic properties of surface environment near the well. Land use and soil media was major explanatory variables for shallow and bedrock groundwater, respectively and residential area was a major variable in both shallow and bedrock groundwater. Regression involving hydrogeologic parameters and field parameters showed that EC, paddy and pH were major variables in shallow groundwater whereas DO, EC and natural area were in bedrock groundwater. Field parameters have much higher explanatory power over the hydrogeologic parameters suggesting field parameters which are routinely measured can provide important information on each well in assessment of nitrate contamination. The most relevant buffer radii can be applied to estimation of travel time of contaminants in surface environment to wells.