• Title/Summary/Keyword: time-varying gravity

Search Result 28, Processing Time 0.027 seconds

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

Development of a self-leveling system for the bucket of an agricultural front-end loader using an electro hydraulic proportional valve and a tilt sensor (전자유압 비례밸브와 경사센서를 이용한 농용 프론트 로더 버켓 능동수평유지 시스템 개발)

  • Lee, Chang Joo;Ha, Jong Woo;Choi, Deok Su;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 2015
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements for farm work. However, when the tractor carries material using the bucket attached to the FEL on a sloping ground, the materials can spill or roll back over the operator due to the tilted body, thereby requiring the bucket surface to remain level at a constant value regardless of varying slopes. In this study, an active system for controlling the angle of the FEL bucket on a tractor based on the real-time measurement of ground slopes was developed to enable the bucket to constantly remain level. A FEL simulator operated based on an electro hydraulic proportional valve (EHPV) was constructed in the laboratory to develop a proportional-integral-derivative (PID) controller forming a virtual electronic control unit (ECU) on the computer, which could automatically adjust the bucket angles depending on varying input angles while sending SAE-J1939 associated messages via CAN BUS to the EHPV. The different parameter values for the PID controller due to the gravity effect of the bucket were determined using a manual PID tuning method while assuming that the tractor travels on either an ascending slope or a descending slope. The developed PID control-based self-leveling system showed a mean of steady-state errors of within $1^{\circ}$ and a mean of delayed times of ~ 0.8s when the step input of $+20^{\circ}$ was given, implying that the developed system and control algorithm would be effective in maintaining the bucket angle at a certain value. Future studies include the improvement of the control algorithm to reduce such a time delay as well as the application of the developed algorithm to the FEL mounted on a tractor tested at a testing ground.

Effect of Pomegranate (Punica granatum L.) Peel Powder on the Quality Characteristics, Retrogradation and Antioxidant Activities of Sponge Cake (석류 껍질 분말을 첨가한 스펀지 케이크의 품질 특성, 노화도 분석 및 항산화 활성)

  • Zhang, Yangyang;Song, Ka-Young;O, Hyeonbin;Joung, Ki Youeng;Shin, So Yeon;Kim, Young-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.3
    • /
    • pp.578-590
    • /
    • 2017
  • An agricultural waste, pomegranate (Punica granatum L.) peel is known to be rich in total phenolics, which are flavonoids having strong antioxidant effects. In this study, pomegranate peel sponge cakes were prepared with varying ratios of freeze dried pomegranate peel powder (0, 1, 3, 5, 7% (w/w)) to examine their effect on quality characteristics, retrogradation and antioxidant activities. The specific gravity and moisture contents of 3, 5, and 7% pomegranate peel powder showed higher values than the control and 1% group. Addition of pomegranate peel powder increased the batter yield, while there was a significant decrease in baking loss. Increasing pomegranate peel powder content significantly decreased the lightness (L) (from 75.03 to 57.04) and pH values, whereas redness (a), yellowness (b) and ${\Delta}E$ were increased. Increasing concentration of the peel powder also increased the hardness and chewiness, while the springiness and cohesiveness decreased. Considering the Avrami equation, Avrami exponene (n) decreased from 1.8055 (control) to 0.9199 (7% pomegranate peel powder). Time constant (1/k) was lowest in control (at 17.64) and highest in the 7% group (39.84). Total polyphenol, flavonoid content, DPPH and ABTS radical scavenging activities significantly increased with increments in the content of pomegranate peel powder. A sensory evaluation by the 7-point scaling method showed that the sponge cake containing 7% pomegranate peel powder had the highest scores in color, flavor, sweetness, chewiness and overall acceptability. Hence, it is considered that sponge cake supplemented with 7% pomegranate peel powder is the most appropriate for quality characteristics, retrogradation and antioxidant activities.

Remote Sensing of Surface Films as a Tool for the Study of Oceanic Dynamic Processes

  • Mitnik, Leonid;Dubina, Vyacheslav;Konstantinov, Oleg;Fischenko, Vitaly;Darkin, Denis
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.111-119
    • /
    • 2009
  • Biogenic surface films, which are often present in coastal areas, may enhance the signatures of hydrodynamic processes in microwave, optical, and infrared imagery. We analyzed ERS-1/2 Synthetic Aperture Radar (SAR) and Envisat Advanced Synthetic Aperture Radar (ASAR) images taken over the Japan/East Sea (JES). We focused on the appearance of the contrast SAR signatures, particularly the dark features of different scales caused by various oceanic and atmospheric phenomena. Spiral eddies of different scales were detected through surface film patterns both near the coast and in the open regions of the JES in warm and cold seasons. During field experiments carried out at the Pacific Oceanological Institute (POI) Marine Station 'Cape Shults' in Peter the Great Bay, the sea surface roughness characteristics were measured during the day and night using a developed polarization spectrophotometer and various digital cameras and systems of floats. The velocity of natural and artificial slicks was estimated using video and ADCP time series of tracers deployed on the sea surface. The slopes of gravity-capillary wave power spectra varied between .4 and .5. Surface currents in the natural and artificial slicks increased with the distance from the coast, varying between 4 and 40 cm/s. The contrast of biogenic and anthropogenic slicks detected on vertical and horizontal polarization images against the background varied over a wide range. SAR images and ancillary satellite and field data were processed and analyzed using specialized GIS for marine coastal areas.

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.

Origin of Dark-Energy and Accelerating Universe

  • Keum, Yong-Yeon
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.34.1-34.1
    • /
    • 2009
  • After SNIa and WMAP observations during the last decade, the discovery of the accelerated expansion of the universe is a major challenge to particle physics and cosmology. There are currently three candidates for the dark energy which results in this accelerated expansion: $\cdot$ a non-zero cosmological constant, $\cdot$ a dynamical cosmological constant (quintessence scalar field), $\cdot$ modifications of Einstein's theory of gravity. The scalar field model like quintessence is a simple model with time-dependent w, which is generally larger than -w1. Because the different w lead to a different expansion history of the universe, the geometrical measurements of cosmic expansion through observations of SNIa, CMB and baryon acoustic oscillations (BAO) can give us tight constraints on w. One of the interesting ways to study the scalar field dark-energy models is to investigate the coupling between the dark energy and the other matter fields. In fact, a number of models which realize the interaction between dark energy and dark matter, or even visible matter, have been proposed so far. Observations of the effects of these interactions will offer an unique opportunity to detect a cosmological scalar field. In this talk, after briefly reviewing the main idea of the three possible candidates for dark energy and their cosmological phenomena, we discuss the interactinng dark-energy model, paying particular attention to the interacting mechanism between dark energy with a hot dark matter (neutrinos). In this so-called mass-varying neutrino (MVN) model, we calculate explicitly the cosmic microwave background (CMB) radiation and large-scale structure (LSS) within cosmological perturbation theory. The evolution of the mass of neutrinos is determined by the quintessence scalar field, which is responsible for the cosmic acceleration today.

  • PDF

Improvement of Grouting by Short-period Vibration Energy (단주기 진동에너지에 의한 그라우팅 보강효과)

  • Seo, Moonbok;Kwon, Sanghoon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.35-42
    • /
    • 2015
  • Grouting method has been widely used for the ground improvement and stabilization: mostly to block or control the ground water in the early years and to improve the ground, repair the structure in recent years, ever increasing its use. Despite many advantages so far, the existing grouting method also has some shortcomings including uncertain permeation of grouting with gravity type if the voids between the soil particles are narrow, and problems due to the relaxation of the neighboring ground when injected using injection pressure. As an alternative, a vibration injection method with constant amplitude and frequency has been developed in recent years, with the vibration grouting being reported to have a permeability increasing effect of grout material compared with the positive pressure injection type. Accordingly, the purpose of this study is to investigate the improvement effect of the vibration grouting that applies short-period vibration energy by varying vibration cycle, vibration time and ground conditions to evaluate the strength enhancing effect of grouting materials, expansion effect of grouting body, ground improvement effect of the grouting and the penetration characteristics of the rock joint. The findings of this study show the improved compressive strength of grout, expansion of grouting body and increased penetration rate, according to the vibration compared with non-vibration under the loose soil condition.

A Feasibility Study on the Use of Liner and Cover Materials Using Sewage Sludge (하수슬러지의 차수재 및 복토재로의 이용타당성에 관한 연구)

  • 유남재;김영길;박병수;정하익
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.43-71
    • /
    • 1999
  • This research is an experimental work of developing a construction material using municipal wastewater sludge as liner and cover materials for waste disposal landfill. Weathered granite soil and flyash, produced as a by-product in the power plant, were used as the primary additives to improve geotechnical engineering properties of sludge. For secondary additives, bentonite and cement were mixed with sludge to decrease the permeability and to increase the shear strength, respectively. Various laboratory test required to evaluate the design criteria for liner and cover materials, were carried out by changing the mixing ratio of sludge with the additives. Basic soil properties such as specific gravity, grain size distribution, liquid and plastic limits were measured to analyze their effects on permeability, compaction, compressibility and shear strength properties of mixtures. Laboratory compaction tests were conducted to find the maximum dry densities and the optimum moisture contents of mixtures, and their effectiveness of compaction in field was consequently evaluated. Permeability tests of variable heads with compacted samples, and the stress-controlled consolidation tests with measuring permeabilities of samples during consolidation process were performed to obtain permeability, and to find the compressibility as well as consolidational coefficients of mixtures, respectively. To evaluate the long term stability of sludges, creep tests were also conducted in parallel with permeability tests of variable heads. On the other hand, for the compacted sludge decomposed for a month, permeability tests were carried out to investigate the effect of decomposition of organic matters in sludges on its permeability. Direct shear tests were performed to evaluate the shear strength parameters of mixed sludge with weathered granite, flyash and bentonite. For the mixture of sludge with cement, unconfined compression tests were carried out to find their strength with varying mixing ratio and curing time. On the other hand, CBR tests for compacted specimen were also conducted to evaluate the trafficability of mixtures. Various test results with mixtures were assessed to evaluate whether their properties meet the requirements as liner and cover materials in waste disposal landfill.

  • PDF