• Title/Summary/Keyword: time-reversal acoustics

Search Result 9, Processing Time 0.023 seconds

Investigating the Spatial Focusing Performance of Time Reversal Lamb Waves on a Plate through the Finite Element Method (유한요소법을 통한 판에서 시간반전 램파의 공간집속성능 규명)

  • Choi, Jeong-Hee;Lee, Hae-Sung;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1120-1131
    • /
    • 2011
  • Researches using time reversal acoustics(TRA) for impact localization have been paid attention to recently. Dispersion characteristics of Lamb waves, which restrict the utility of classical nondestructive evaluation based on time-of-flight information, can be compensated through the application of TRA to Lamb waves on a plate. This study investigates the spatial focusing performance of time reversal Lamb waves on a plate using finite element analysis. In particular, the virtual sensor effect caused by multiple wave reflections at the boundaries of a plate is shown to enable the spatial focusing of Lamb waves though a very small number of surface-bonded piezoelectric(PZT) sensors are available. The time window size of forward response signals, are normalized with respect to the number of virtual active sensors. Then their effects on the spatial focusing performance of Lamb waves are investigated.

Investigating the Spatial Focusing Performance of Time Reversal Lamb waves for Impact Localization on a Plate (판의 충격위치 추정을 위한 시간반전 램파의 공간모임성능 규명)

  • Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.418-429
    • /
    • 2011
  • Researches using time reversal acoustics (TRA) for impact localization have been paid attention to recently. Dispersion characteristics of Lamb waves, which restrict the utility of classical nondestructive evaluation based on time-of-flight information, can be compensated through the application of TRA to Lamb waves on a plate. This study investigates the spatial focusing performance of time reversal Lamb waves on a plate using finite element analysis. In particular, the virtual sensor effect caused by multiple wave reflections at the boundaries of the plate is shown to enable the spatial focusing of Lamb waves though a very small number of surface-bonded piezoelectric (PZT) sensors are available. The time window size of forward response signals, are normalized with respect to the number of virtual active sensors. Then their effects on the spatial focusing performance of Lamb waves are investigated.

  • PDF

Understanding the Effects of the Dispersion and Reflection of Lamb Waves on a Time Reversal Process (램파의 분산성과 파 반사가 시간반전과정에 미치는 영향의 이해)

  • Park, Hyun-Woo;Kim, Sung-Bum;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.89-103
    • /
    • 2009
  • This study investigates the applicability of the time reversal concept in modem acoustics to the Lamb waves, which have been widely studied for defect detection in plate-like structures. According to conventional time reversal acoustics, an input signal can be reconstructed at an excitation point if an output signal recorded at another point is reversed in the time domain and emitted back to the original source point. However, the application of a time reversal process(TRP) to Lamb wave propagations is complicated due to velocity and amplitude dispersion characteristics of Lamb waves and reflections from the boundaries of a structure. In this study, theoretical investigations are presented to better understand the time reversibility of Lamb waves. In particular, the effects of within-mode dispersion, multimode dispersion, amplitude dispersion, and reflections from boundaries on the TRP are theoretically formulated. Simple numerical case studies are conducted to validate the theoretical findings of this study.

Broadening of Foci in an Ocean Time Reversal Processing and Application to Underwater Acoustic Communicaion

  • Shin, Kee-Cheol;Kim, Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.104-111
    • /
    • 2008
  • Recently, a method for robust time reversal focusing has been introduced to extend the period of stable focusing in time-dependent ocean environments [S. Kim et al., J. Acoust. Soc. Am. 114, 145-157, (2003)]. In this study, concept of focal-size broadening based on waveguide invariant theory in an ocean time reversal acoustics is described. It is achieved by imposing the multiple location constraints. The signal vector used in multiple location constraints are found from the theory on waveguide invariant for frequency band corresponding the extended focal range. The broadening of foci in an ocean waveguide can play an important role in the application of time reversal processing, particularly to the underwater acoustic communication with moving vehicles. The proposed method is demonstrated in the context of the underwater acoustic communication from the transmit/receive array (TRA) to a slowly moving vehicle.

Subjective Timbre Space of 45 Modified Violin Tones

  • Ahn, Chul-Yong;Pang, Hee-Suk;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1E
    • /
    • pp.38-42
    • /
    • 2000
  • In this paper we studied the reduced subjective timbre space of time-varying tones as well as steady state tones. 45 modified test tones were constructed from the original violin tone in consideration of 4 physical factors: spectrum envelope, inharmonicity, time-varying spectrum and time reversal. The semantic differential (SD) method was used in the listening test. According to the factor analysis, the adjectives can be factorized into 4 groups. The first factor is characterized by the adjectives, 'free', 'broad', 'deep', 'rich', 'strong' and 'reverberant', the second by 'tenor', 'clear', 'bright', 'light' and 'sharp', the third by 'easy', 'smooth', and 'solid', the fourth by 'warm' and 'full'. The first factor, 'richness', seems to be dependent upon the time-varying characteristic of a tone. The second factor, 'sharpness', is shown to play an important role in a time-varying tone as well as in a steady state tone.

  • PDF

Debonding monitoring of CFRP strengthened RC beams using active sensing and infrared imaging

  • Sohn, Hoon;Kim, Seung Dae;In, Chi Won;Cronin, Kelly E.;Harries, Kent
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.391-406
    • /
    • 2008
  • This study attempts to develop a real-time debonding monitoring system for carbon fiber-reinforced polymer (CFRP) strengthened structures by continuously inspecting the bonding condition between the CFRP layer and the host structure. The uniqueness of this study is in developing a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected without relying on previously-obtained baseline data. The proposed reference-free damage diagnosis is achieved based on the concept of time reversal acoustics (TRA). In TRA, an input signal at an excitation point can be reconstructed if the response signal measured at another point is reemitted to the original excitation point after being reversed in the time domain. Examining the deviation of the reconstructed signal from the known initial input signal allows instantaneous identification of damage without requiring a baseline signal representing the undamaged state for comparison. The concept of TRA has been extended to guided wave propagations within the CFRP-strengthened reinforced concrete (RC) beams to improve the detectibility of local debonding. Monotonic and fatigue load tests of large-scale CFRP-strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system. Comparisons with an electro-mechanical impedance method and an inferred imaging technique are provided as well.

Simulating the Spatial Focusing of Time Reversal Lamb Waves Using Virtual Sensors (가상탐지자를 이용한 시간반전램파의 공간모임 모사)

  • Park, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.295-298
    • /
    • 2011
  • 최근 3년간 판 구조물의 손상진단에서 시간반전램파 (Time reversal Lamb waves)의 가능성이 주목 받고 있다. 시간반전음향학(Time reversal acoustics)에 의하면 시간반전램파의 공간모임을 적절히 활용하면 판에 순간적으로 가해지거나 발생한 충격하중의 위치를 높은 공간해상도와 신호대 잡음비로 추정할 수 있다고 알려져 있다. 이 연구에서는 시간반전램파의 공간모임을 직사각형 평판에서 가상탐지자 모델을 이용하여 모사한다. 특히, 평판에서의 파 반사에 의해 발생하는 가상탐지자 효과에 의해 단일 부착형 압전소자만을 사용하더라도 시간반전 램파의 공간 모임 구현이 가능함을 보인다. 또한 제안된 방법의 결과를 유한 요소 해석결과와 비교하고 제안된 방법의 타당성을 보인다.

  • PDF

Theoretical Development and Experimental Investigation of Underwater Acoustic Communication for Multiple Receiving Locations Based on the Adaptive Time-Reversal Processing (다중수신 수중음향통신을 위한 적응 시계열반전처리 기법의 이론연구와 실험적 검증)

  • Shin Kee-Cheol;Byun Yang-Hun;Kim Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.239-245
    • /
    • 2006
  • Time-reversal processing (TRP) has been shown as an effective way to focus in both time and space. The temporal focusing properties have been used extensively in underwater acoustics communications. Recently. adaptive time-reversal processing (ATRP) was applied to the simultaneous multiple focusing in an ocean waveguide. In this study. multiple focusing with ATRP is extended to the underwater acoustic communication algorithm for multiple receiving locations. The developed algorithm is applied to the underwater acoustic communication to show, via simulation and real data, that the simultaneous self-equalization at multiple receiving locations is achieved.

Determination of Impact Source Location Using a Single Transducer and Time Reversal Technique (단일센서와 시간역전법을 이용한 판에서의 충격위치 결정에 관한 연구)

  • Jeong, Hyun-Jo;Cho, Sung-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a plate structure is presented in this paper. The method employs a single sensor and spatial focusing of time reversal (TR) acoustics. We first examine the TR focusing effect at the impact position and its surroundings through simulation and experiment. The imaging results of impact points show that the impact source location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testings of plate-like structures.