• Title/Summary/Keyword: time-resolved time-resolved

Search Result 905, Processing Time 0.041 seconds

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Jung, Euo Chang;Kim, Tae-Hyeong;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.497-508
    • /
    • 2020
  • In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography (시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템)

  • Ji, Inseo;Kang, Jeon-Woong;Kim, Taeyung;Kang, Min Seo;Kwon, Sun Beom;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.300-307
    • /
    • 2022
  • Time-resolved serial femtosecond crystallography (TR-SFX) is a powerful technique for determining temporal variations in the structural properties of biomacromolecules on ultra-short time scales without causing structure damage by employing femtosecond X-ray laser pulses generated by an X-ray free electron laser (XFEL). The mixing rate of reactants and biomolecule samples, as well as the hit rate between crystal samples and x-ray pulses, are critical factors determining TR-SFX performance, such as accurate image acquisition and efficient sample consumption. We here develop two distinct sample delivery systems that enable ultra-fast mixing and on-demand droplet injecting via pneumatic application with a square pulse signal. The first strategy relies on inertial mixing, which is caused by the high-speed collision and subsequent coalescence of droplets ejected through a double nozzle, while the second relies on on-demand pneumatic jetting embedded with a 3D-printed micromixer. First, the colliding behaviors of the droplets ejected through the double nozzle, as well as the inertial mixing within the coalesced droplets, are investigated experimentally and numerically. The mixing performance of the pneumatic jetting system with an integrated micromixer is then evaluated by using similar approaches. The sample delivery system devised in this work is very valuable for three-dimensional biomolecular structure analysis, which is critical for elucidating the mechanisms by which certain proteins cause disease, as well as searching for antibody drugs and new drug candidates.

Spectroscopy of Visible Light Emitted from Plasma Occurred by Pulse Discharge (펄스형 방전플라스마에서 발생하는 가시광선의 분광특성 연구)

  • Choi, Woon Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 1998
  • We investigated visible light radiated from Plasma focus device by time-resolved analyzed method and time-integrated analyzed method. Plasma focus consisted of two coaxial electrodes is a device that translated from electric energy of maximum 40 kV/20 kJ in capacitor banks into visible light by electric discharge. Spectral analysis is using Monochromator(f =0.5m). Time-resolved spectrum is analyzed with a oscilloscope the light pulse of constant wavelength and time-integrated spectrum does with densitometer the film which developed a constant range of wavelength. The optimum condition of visible emission was that the discharging voltage was 17kV and the gas pressure 0.5 torr Ar.

  • PDF

Photoluminescence Studies of InP/InGaP Quantum Structures Grown by a Migration Enhanced Molecular Beam Epitaxy

  • Cho, Il-Wook;Ryu, Mee-Yi;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • v.25 no.4
    • /
    • pp.81-84
    • /
    • 2016
  • InP/InGaP quantum structures (QSs) grown on GaAs substrates by a migration-enhanced molecular beam epitaxy method were studied as a function of growth temperature (T) using photoluminescence (PL) and emission-wavelength-dependent time-resolved PL (TRPL). The growth T were varied from $440^{\circ}C$ to $520^{\circ}C$ for the formation of InP/InGaP QSs. As growth T increases from $440^{\circ}C$ to $520^{\circ}C$, the PL peak position is blue-shifted, the PL intensity increases except for the sample grown at $520^{\circ}C$, and the PL decay becomes fast at 10 K. Emission-wavelength-dependent TRPL results of all QS samples show that the decay times at 10 K are slightly changed, exhibiting the longest time around at the PL peak, while at high T, the decay times increase rapidly with increasing wavelength, indicating carrier relaxation from smaller QSs to larger QSs via wetting layer/barrier. InP/InGaP QS sample grown at $460^{\circ}C$ shows the strongest PL intensity at 300 K and the longest decay time at 10 K, signifying the optimum growth T of $460^{\circ}C$.