• Title/Summary/Keyword: time-resolved fluorescence

Search Result 60, Processing Time 0.029 seconds

Solvent effect on the excited state of stilbene dendrimers bearing phenylacetylene groups

  • Nishimura, Yoshinobu;Arai, Tatsuo
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.85-87
    • /
    • 2014
  • We studied the characteristics of emissive state of the first (p-G1) and second (p-G2) generation of phenylacetylene dendrimers bearing stilbene as a core by using time-resolved fluorescence spectroscopy in cyclohexane (c-Hex) and N, N-dimethylformide (DMF), which are nonpolar and polar solvents, respectively. Time-dependent red-shift of emission spectra p-G2 both in c-Hex and DMF was observed in comparison with p-G1. Besides, the time constant of red-shift of spectra was found to be larger in DMF than in c-Hex. This indicates that the emissive state of p-G2 has a polar character in DMF as a result of charge delocalization from core to peripheral dendrons followed by stabilization of emissive state.

Uranium Fluorescence Analysis in the Raffinate Solution of Nuclear Fuel Conversion Process Using Time-resolved Laser-induced Fluorimetry (레이저 유발형광법을 이용한 변환공정 폐액중의 우라늄 형광분석)

  • Lee, Sang-Mock;Kim, Duk-Hyeon;Shin, Jang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.548-551
    • /
    • 1993
  • A simple and new uranium analysis technique for raffinate solution of nuclear fuel conversion process was developed using a time-resolved laser-induced fluorimetry. The addition of 4 M-phosphoric acid more than 10 times in volume to the raffinate sample was found to be efficient for obtaining stable uranium fluorescence signal which was not influenced by many fluorescence quenchers. A calibration curve of a good linearity for the fluorescence intensity vs. the uranium concentration was obtained at the range of 3.0$\times$10$^{-6}$-6.0$\times$10$^{-5}$ M U $O_2$$^{2+}$ in the raffinate samples.

  • PDF

Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

  • Lee, Junghwa;Joo, Taiha
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.881-885
    • /
    • 2014
  • Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ~300 fs component observed frequently in ESIPT dynamics arises from the $S_2{\rightarrow}S_1$ internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in $S_1$ state to the keto isomer in $S_2$ state.

Investigation of Coke Formation on H-ZSM-5 Catalyst During Aromatization of C5 Paraffin and Olefin Using Optical and Fluorescence Microscopy

  • Chung, Young-Min
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Space- and time-resolved in-situ optical and fluorescence microspectroscopy techniques have been applied to investigate the coke formation during aromatization of C5 paraffin and olefin over H-ZSM-5 crystal. In-situ UV/vis absorption measurement offers space- and time-resolved information for the coke formation. Different coking trends have been observed with respect to the location of a crystal as well as the reactant types. From in-situ confocal fluorescence microspectroscopy study, it is revealed that the concentration of certain species photo-excited at 488 nm becomes high at the central region, whereas the compounds emitting fluorescence by 561 nm laser move towards the boundary region of the crystal. The different fluorescence patterns obtained varying excitation lasers suggest the existence of distinct fluorescence emitting species having different degree of coke growth.

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Jung, Euo Chang;Kim, Tae-Hyeong;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.497-508
    • /
    • 2020
  • In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

PROTEIN CONFORMATIONS OF OCTOPUS RHODOPSIN AND ITS DEPROTONATED PHOTOCYCLE INTERMEDIATE MONITORED BY ABSORPTION AND PROTEIN FLUORESCENCE

  • Jang, Du-Jeon;Lee, SunBae
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1995
  • Picosecond time-resolved and static protein fluorescence spectra and absorption spectra of octopus rhodopsin, a photorecepting protein, are measured and compared with those of bacteriorhodopsin, a photon-induced proton pumping protein, to understand the protein conformations and functions of octopus rhodopsin and its deprotonated photocycle intermediate. The bluer and weaker absorption of retinal indicates that octopus rhodopsin is better in thermal noise suppression but less efficient in light harvesting than bacteriorhodopsin. The protein fluorescence of octopus rhodopsin shows the characteristic of Trp only and the uantum efficiency and lifetime variations may result primarily from variations in the coupling strength with the retinal. The stronger intensity by four times and larger red shift by 12 nm of fluorescence suggest that octopus rhodopsin has more open and looser structure compared with bacteriorhodopsin. Fluorescence decay profiles reveal two decay components of 300 ps (60%) and 2 ns (40%). The deprotonation of protonated Schiff's base increases the shorter decay time to 500 ps and enhances the fluorescence intensity by 20%. The fluorescence and its decay time from Trp residues near retinal are influenced more by the deprotonation. The increase of fluorescence intimates that protein structure becomes loosened and relaxed further by the deprotonation of protonated Schiff's base. The driving force of sequential changes initiated by absorption of a photon is too exhausted after the deprotonation to return the intermediate to the ground state of the begun rhodopsin form.

  • PDF

Photoisomerization of Symmetric Carbocyanines

  • 민형식;강유남;박정희
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.747-753
    • /
    • 1998
  • The phoisomerization process of symmetric carbocyanine dyes such as 3,3'-diethyloxadicarbocyanine iodide (DODCI), 3,3'-diethylthiadicarbocyanine iodide (DfDCI), 1,1'-diethyl-2,2'-dicarbocyanine iodide (DDI), 1,1'-diethyl-2,2'-carbocyanine iodide (DCI), and cryptocyanine (1,1'-diethyl-4,4'-carbocyanine) iodide (CCI) have been studied by measuring the steady state and time resolved fluorescence spectra and the ground-state recovery profiles. The steady-state fluorescence spectrum of photoisomer as a function of concentration and excitation wavelength provides the evidence that the fluorescence of photoisomer is formed by the radiative energy transfer from the normal form and the quantum yield for the formation of photoisomer is increased by decreasing the excitation wavelength. The fluorescence decay profiles have been measured by using the time correlated single photon counting (TCSPC) technique, showing a strong dependence on the concentration and the detection wavelength, which is due to the formation of excited photoisomers produced either by the radiative energy transfer from the non-nal form or by absorbing the 590 nm laser pulse. We first report the fluorescence decay time of photoisomers for these cyanine dyes. The experimental results are explained by introducing the semiempirical calculations. The ground state recovery profiles of DTDCI, DDI, and CCI normal forms have been measured, showing that the recovery time from the singlet excited state is similar with the fluorescence decay time.

Photoluminescence Characteristics of p-Phenylene Vinylene and Its Derivatives in Solution and in Nanoaggregates

  • Eom, Intae;Lim, Seon Jeong;Park, Soo Young;Joo, Taiha
    • Rapid Communication in Photoscience
    • /
    • v.4 no.3
    • /
    • pp.70-72
    • /
    • 2015
  • Oligomers of p-phenylene vinylene and its derivatives have drawn much attention due to their unusual emission characteristics of showing increased emission when they form into nanoparticles. We have investigated the optical properties of the oligo-(p-phenylene vinylene) and its cyano-substituted derivatives in solution and in nanoaggregate media by femtosecond and picosecond time resolved fluorescence as well as stationary spectroscopies. All the spectroscopic data are consistent with the conclusion that the cyano substitution on the ${\beta}$-position of oligo-(p-phenylene vinylene) leads to breakage of the otherwise planar structure of cyano-unsubstituted molecules, which opens up an extremely efficient, as fast as 100 fs, non-radiative relaxation channel of the excited state. Formation of the nanoaggregates reverts the effect to make the molecules planar and to block the non-radiative relaxation channel. Therefore, concerning the applications in organic electroluminescent devices and organic light emitting diodes, substitution by the cyano group is not advantageous, although such modification should be useful in respect of controlling fluorescence intensity in different media.