• 제목/요약/키워드: time-domain features

검색결과 257건 처리시간 0.024초

Wavelet Power Spectrum Estimation for High-resolution Terahertz Time-domain Spectroscopy

  • Kim, Young-Chan;Jin, Kyung-Hwan;Ye, Jong-Chul;Ahn, Jae-Wook;Yee, Dae-Su
    • Journal of the Optical Society of Korea
    • /
    • 제15권1호
    • /
    • pp.103-108
    • /
    • 2011
  • Recently reported asynchronous-optical-sampling terahertz (THz) time-domain spectroscopy enables high-resolution spectroscopy due to a long time-delay window. However, a long-lasting tail signal following the main pulse is often measured in a time-domain waveform, resulting in spectral fluctuation above a background noise level on a high-resolution THz amplitude spectrum. Here, we adopt the wavelet power spectrum estimation technique (WPSET) to effectively remove the spectral fluctuation without sacrificing spectral features. Effectiveness of the WPSET is verified by investigating a transmission spectrum of water vapor.

Rotor Fault Detection of Induction Motors Using Stator Current Signals and Wavelet Analysis

  • Hyeon Bae;Kim, Youn-Tae;Lee, Sang-Hyuk;Kim, Sungshin;Wang, Bo-Hyeun
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.539-542
    • /
    • 2003
  • A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.

  • PDF

신경망을 이용한 적응 다중 대역 필터 설계 (A Study on Adaptive Filter Bank using Neural Networks in Time Domain)

  • 이건기;이주원;김광열;방만식;이병로;김영일
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.673-677
    • /
    • 2003
  • 본 연구에서는 적응 필터 뱅크와 유사한 신경망을 이용한 시간영역에서의 새로운 필터뱅크(뉴럴 필터 뱅크)와 필터 창 함수를 가진 새로운 필터 뉴런을 제안하였다. 제안된 뉴럴 필터 뱅크의 성능을 검증하기 위해 두 가지의 예를 들어 실험하였다. 실험에서 제안된 기법은 기존의 방법인 주파수 영역에서의 필터뱅크보다 간단한 구조와 고속처리가 가능한 특성을 보였다. 따라서 제안된 방법은 시간 영역에서의 신호의 특징 검출에 있어 높은 성능을 제공할 것으로 사료된다.

Fault Detection and Identification of Induction Motors with Current Signals Based on Dynamic Time Warping

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권2호
    • /
    • pp.102-108
    • /
    • 2007
  • The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signal; onto frequency domain. The raw signals can not show the significant feature, therefore difference values are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the four fault types. This study describes the results of detecting fault using wavelet analysis.

DTW를 이용한 유도전동기 베어링 및 회전자봉 고장진단 (Fault Detection and Diagnosis of Faulty Bearing and Broken Rotor Bar of Induction Motors Based on Dynamic Time Warping)

  • 이재현;배현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.95-102
    • /
    • 2007
  • The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signals onto frequency domain. The raw signals can not show the significant feature, therefore difference values between the signal of the health conditions and that of the fault conditions are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the fault type. This study describes the results of detecting fault using wavelet analysis.

신경회로망을 이용한 공작기계 주축용 베어링의 고장검지 (Detection of Main Spindle Bearing Conditions in Machine Tool via Neural Network Methodolog)

  • Oh, S.Y.;Chung, E.S.;Lim, Y.H.
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.33-39
    • /
    • 1995
  • This paper presents a method of detecting localized defects on tapered roller bearing in main spindle of machine tool system. The statistical parameters in time-domain processing technique have been calculated to extract useful features from bearing vibration signals. These features are used by the input feature of an artificial neural network to detect and diagnose bearing defects. As a results, the detection of bearing defect conditions could be successfully performed by using an artificial neural network with statistical parameters of acceleration signals.

  • PDF

Conditional Random Fields를 이용한 영역 행위 분류 모델 (A Domain Action Classification Model Using Conditional Random Fields)

  • 김학수
    • 인지과학
    • /
    • 제18권1호
    • /
    • pp.1-14
    • /
    • 2007
  • 목적 지향 대화에서 사용자의 의도는 화행과 개념열의 쌍으로 구성된 영역 행위로 표현될 수 있다. 그러므로 지능적인 대화 시스템을 구성하기 위해서는 영역 행위를 정확히 파악하는 것이 매우 중요하다. 본 논문에서는 CRFs (Conditional Random Fields)를 이용하여 화행과 개념열을 동시에 결정하는 통계 모델을 제안한다. 편향 학습 문제를 피하기 위하여 제안한 모델은 어휘와 품사 같은 낮은 수준의 언어 자질을 입력 자질로 사용하며, 카이 제곱 통계량을 이용하여 불필요한 자질들을 제거한다. 일정 관리 영역에서 실험을 수행한 결과, 제안한 모델은 화행 분류 정착률에서 93.0%, 개념열 분류 정확률에서 90.2%의 좋은 성능을 보였다.

  • PDF

고속 푸리에 변환 및 심층 신경망을 사용한 전력 품질 외란 감지 및 분류 (Power Quality Disturbances Detection and Classification using Fast Fourier Transform and Deep Neural Network)

  • 첸센폰;임창균
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.115-126
    • /
    • 2023
  • 무작위 및 주기적인 변동하는 재생에너지 발전 전력 품질 교란으로 인해 발전 변환 송전 및 배전에서 더 자주 발생하게 된다. 전력 품질 교란은 장비 손상 또는 정전으로 이어질 수 있다. 따라서 서로 다른 전력 품질 외란을 실시간으로 자동감지하고 분류하는 것이 필요하다. 전통적인 PQD 식별 방법은 특징 추출 특징 선택 및 분류의 세 단계로 구성된다. 그러나 수동으로 생성한 특징은 선택 단계에서 정확성을 보장하기 힘들어서 분류 정확도를 향상하는 데에는 한계가 있다. 본 논문에서는 16가지 종류의 전력 품질 신호를 인식하기 위해 CNN(Convolution Neural Networ)과 LSTM(Long Short Term Memory)을 기반으로 시간 영역과 주파수 영역의 특징을 결합한 심층 신경망 구조를 제안하였다. 주파수 영역 데이터는 주파수 영역 특징을 효율적으로 추출할 수 있는 FFT(Fast Fourier Transform)로 얻었다. 합성 데이터와 실제 6kV 전력 시스템 데이터의 성능은 본 연구에서 제안한 방법이 다른 딥러닝 방법보다 일반화되었음을 보여주었다.

Using Features as the Knowledge Carrier for Cross Company Collaboration and Change Management - A design methodology for compressing lead-time from plastic part design to mold making

  • Zengzhi, Li;Qinrong, Fu;Feng, Lu Wen;Bin, Song
    • International Journal of CAD/CAM
    • /
    • 제3권1_2호
    • /
    • pp.43-50
    • /
    • 2003
  • This paper presents a methodology in which the knowledge of design intents and change requests is communicated unambiguously cross collaboration partners through features. The domain of application is focused on the plastic part design for enabling effective collaboration between the product design and plastic mold making. The methodology takes the feature-based design approach and allows design features and knowledge to be reused in plastic injection mold design. It shortens the mold design lead-time, reduces mold design efforts, and enables unambiguous and fast design change management between product and mold designers. These contribute to the reduction of product development cycle time.

뉴로-퍼지 신경망 기반 최적의 HRV특징을 이용한 우울증진단 알고리즘 (Neuro-Fuzzy Network-based Depression Diagnosis Algorithm Using Optimal Features of HRV)

  • 장진흥;전설위;임준식
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-9
    • /
    • 2012
  • 본 논문은 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership functions, NEWFM)과 심박수 변이도(Heart Rate Variability, HRV)를 이용하여 우울증 진단알고리즘을 제안하고 있다. 본 알고리즘에서 사용할 NEWFM의 입력특징을 추출하기 위해서 주파수도메인 특징추출, 시간도메인 특징추출, 웨이블릿변환 특징추출, 포인케어변환 특징추출 방법을 이용하여 22개의 초기 HRV 특징들을 추출하였다. 또한 NEWFM에서 제공하는 비중복면적 분산측정법 (Non-overlap Area Distribution Measurement, NADM)에 의해 입력특징의 중요도를 평가하여 22개의 초기특징으로부터 중요도가 가장 높은 6개 최적입력특징을 선택하였다. 이 6개 특징을 이용하여 우울증을 진단한 결과는 95.8% 의 정확도를 나타내었다.