• Title/Summary/Keyword: time-dependent effects

Search Result 1,844, Processing Time 0.027 seconds

Association of Anti-apoptotic Mechanism Due to House Dust Mite in Neutrophils with Protein Synthesis and Bad

  • Kim, In Sik;Lee, Ji-Sook
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.211-214
    • /
    • 2016
  • House dust mite is an essential allergen in the pathogenesis of allergic diseases. Abnormal regulation of neutrophil apoptosis is an important pathogenic process in allergic diseases. In the present study, we investigated the effects of house dust mites on spontaneous apoptosis of neutrophils and its associated mechanisms. Extract of Dermatophagoides pteronissinus (DP) inhibited neutrophil apoptosis in a time-dependent manner. Cycloheximide (CHX), an inhibitor of translation, increased apoptosis of DP-treated neutrophils as well as control cells. The pro-apoptotic effect of CHX was blocked by DP in neutrophils. In addition, DP increased the phosphorylation of Bad in a time-dependent manner, indicating that it exerted an inhibitory effect on the function of Bad. These results suggest that DP has anti-apoptotic effects of neutrophils and may regulate protein synthesis and activation of Bad. Moreover, these findings may shed light on elucidation of allergy pathogenesis due to house dust mites.

A study on the Reliability Analysis of Nuclear Steel Containment Structures Subject to Internal Pressure (내압을 받는 원전 강재격납건물의 신뢰성 해석)

  • 오병환;최성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.229-232
    • /
    • 1999
  • Nuclear power plant structures may be exposed to aggressive environmental effects that may cause their damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The assessment of existing steel containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration, using time-dependent structural reliability analysis to take loading and strength uncertainties into account. The final goal of this study is to develop the analysis method for the analysis for the reliability of containment structures. The cause and mechanism of corrosion is first clarified and the reliability assessment method has been established. By introducing the equivalent normal distribution, the procedure of reliability analysis which can determine the failure probabilities has been established.

  • PDF

Effects of Lipopolysaccharide on Pharmacokinetics of Drugs

  • Yang, Kyung-Hee;Lee, Myung-Gull
    • Toxicological Research
    • /
    • v.23 no.4
    • /
    • pp.289-299
    • /
    • 2007
  • Lipopolysaccharide (LPS) endotoxin is an active component in the outer membrane of Gram-negative bacteria. LPS is usually used as an inflammatory animal model. During the inflammation, diarrhea and changes in plasma proteins, in hepatic and/or intestinal microsomal cytochrome P450 (CYP) isozymes, and in the renal and/or biliary excretion of drugs have been reported. Thus, in rats pretreated with lipopolysaccharide endotoxin isolated from Klebsiella pneumoniae (KPLPS rats), the absorption, distribution, metabolism, and excretion of drugs could be expected to be altered. Interestingly time-dependent effects on the hepatic CYP isozymes have been reported in KPLPS rats. Thus, in KPLPS rats, the pharmacokinetics of drugs which are mainly metabolized via CYP isozymes could be expected to be time-dependent. In this review, an attempt to explain changes in pharmacokinetics of drug reported in the literature was made in terms of CYP isozyme changes or urinary and/or biliary excretion changes in KPLPS rats.

Time Dependent Reliability Analysis of the Degrading RC Containment Structures Subjected to Earthquake Load (지진하중을 받는 RC 격납건물의 열화에 따른 신뢰성 해석)

  • 오병환;최성철;현창헌
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.559-564
    • /
    • 2000
  • Nuclear power plant structures amy be exposed to aggressive environmental effects that may cause their strength and stiffness to decrease over their service lives. Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The final goal of this study is to develop the reliability analysis of RC containment structures. The cause of the degrading is first clarified and the reliability assessment has been conducted. By introducing stochastic analysis based on random vibration theory, the reliability analysis which can determine the failure probabilities has been established.

  • PDF

Time-dependent analysis of launched bridges

  • Mapelli, M.;Mola, F.;Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.741-764
    • /
    • 2006
  • The time-dependent analysis of prestressed concrete bridges built adopting the incremental launching technique is presented. After summarizing the well known results derived from the elastic analysis, the problem is approached in the visco-elastic domain taking into account the effects consequent to the complex load history affecting the structure. In particular, the effects produced by prestressing applied both in the launching phase and after it and by application of imposed displacements and of delayed restraints during the launching phases are carefully investigated through a refined analytical procedure. The reliability of the proposed algorithm is tested by means of comparisons with reference cases for which exact solutions are known. A case study of general interest is then discussed in detail. This case study demonstrates that a purely elastic approach represents a too crude approximation, which is unable to describe the specific character of the problem.

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

The buckling of a cross-ply laminated non-homogeneous orthotropic composite cylindrical thin shell under time dependent external pressure

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.661-677
    • /
    • 2002
  • The subject of this investigation is to study the buckling of cross-ply laminated orthotropic cylindrical thin shells with variable elasticity moduli and densities in the thickness direction, under external pressure, which is a power function of time. The dynamic stability and compatibility equations are obtained first. These equations are subsequently reduced to a system of time dependent differential equations with variable coefficients by using Galerkin's method. Finally, the critical dynamic and static loads, the corresponding wave numbers, the dynamic factors, critical time and critical impulse are found analytically by applying a modified form of the Ritz type variational method. The dynamic behavior of cross-ply laminated cylindrical shells is investigated with: a) lamina that present variations in the elasticity moduli and densities, b) different numbers and ordering of layers, and c) external pressures which vary with different powers of time. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

The dynamic stability of a nonhomogeneous orthotropic elastic truncated conical shell under a time dependent external pressure

  • Sofiyev, A.H.;Aksogan, O.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.329-343
    • /
    • 2002
  • In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.

The Effects of Grain Size on the Degradation Phenomena of PZT Ceramics (입자의 크기가 PZT 세라믹스의 열화현상에 미치는 영향)

  • 정우환;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 1992
  • The effect of grain size on the time-dependent piezoelectrice degradation of a poled PZT of MPB composition Pb0.988Sr0.012 (Zr0.52Ti0.48)O3 with 2.4 mol% of Nb2O5 was studied, and the degradation mechanism was discussed. Changes in the internal bias field and the internal stress both responsible for the time-dependent degradation of poled PZT were examined by the polarization reveral technique, XRD and Vickers indentation, respectively. The piezoelectric degradation increased with increasing time and grain size, and the internal bias field due to space charge diffusion decreased with increasing grain size of poled PZT. The internal bias field, however, was almost insensitive to the degradation time regardless of the grain size. On the other hand, both the x-ray diffraction peak intensity ratio of (002) to (200) and the fracture behavior including the crack propagation support that the ferroelectric domain rearrangement of larger grain size showed rapid relaxation of the internal stress compared with smaller one, which is thought the origin of the larger piezoelectric degradation in the former. In conclusion, the contribution of space charge diffusion on the piezoelectric degradation of PZT is strongly dependent on both the grain size and the composition. Thus, the relaxation of internal stress due to the ferroelectric domain rearrangement as well as the amount and time-dependence of the internal bias field due to space charge diffusion should be considered simultaneously in the degradation mechanism of PZT.

  • PDF

Spatio-temporal dependent errors of radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam;Lee, Dongryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.164-164
    • /
    • 2016
  • Radar rainfall estimates have been widely used in calculating rainfall amount approximately and predicting flood risks. The radar rainfall estimates have a number of error sources such as beam blockage and ground clutter hinder their applications to hydrological flood forecasting. Moreover, it has been reported in paper that those errors are inter-correlated spatially and temporally. Therefore, in the current study, we tested influence about spatio-temporal errors in radar rainfall estimates. Spatio-temporal errors were simulated through a stochastic simulation model, called Multivariate Autoregressive (MAR). For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo. The results indicated that spatio-temporal dependent errors caused much higher variations in peak discharge than spatial dependent errors. To further investigate the effect of the magnitude of time correlation among radar errors, different magnitudes of temporal correlations were employed during the rainfall-runoff simulation. The results indicated that strong correlation caused a higher variation in peak discharge. This concluded that the effects on reducing temporal and spatial correlation must be taken in addition to correcting the biases in radar rainfall estimates. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which was funded by the Korea Institute of Construction Technology.

  • PDF