• 제목/요약/키워드: time-current

검색결과 13,233건 처리시간 0.042초

Assessment of kinetics behavior of electrocoagulation process for the removal of suspended solids and metals from synthetic water

  • Singh, Hariraj;Mishra, Brijesh Kumar
    • Environmental Engineering Research
    • /
    • 제22권2호
    • /
    • pp.141-148
    • /
    • 2017
  • Globalization, industrialization, mining, and uncontrolled population growth have fostered a shortage of potable water. Therefore, it has become imperative to understand an effective and reasonable water purification technique. A renewed interest in electrocoagulation (EC) has been spurred by the search for reliable, cost-effective, water-treatment processes. This paper has elucidated a technical approach for getting rid of heavy metals and total suspended solids (TSS) from synthetic water using an aluminum electrode. The effect of operational parameters, such as current density, inter-electrode distance, operating time, and pH, were studied and evaluated for maximum efficiency. This study corroborates the correlation between current density and removal efficiency. Neutral pH and a low electrode gap have been found to aid the efficacy of the EC setup. The outcome indicates that a maximum TSS removal efficiency of 76.6% occurred at a current density of $5.3mA/cm^2$ during a contact time of 30 min. In the case of heavy metals remediation, 40 min of process time exhibited extremely reduced rates of 99%, 59.2%, and 82.1%, for Cu, Cr, and Zn, respectively. Moreover, kinetic study has also demonstrated that pollutants removal follows first-and second-order model with current density and EC time being dependent.

60세이상 노인의 신체 부위별 전기자극시간에 따른 역치 변화에 대한 연구 (A Study on the Influence of Change of Electrical Stimulation Time on Body Regions Affects on Threshold of People Over Age 60)

  • 이재갑;최정현
    • 대한물리치료과학회지
    • /
    • 제16권4호
    • /
    • pp.29-37
    • /
    • 2009
  • Background: The purpose of this study was influence of change of electrical stimulation time on body regions affects on electrical current threshold. Methods: The present study is to examine the effect of silver spike point (SSP) electrical stimulation (1Hz), transcutaneous electrical nerve stimulation (TENS, 100Hz), and interferential current therapy (ICT, 50Hz) from the low back and scapulodorsal and knee joint regions on stimulation-induced current thresholds from the elderly (over sixty) people (male:72, female:91) in senior welfare center. Result: The low back region, but not scapulodorsal and knee joint region, significantly increased the TENS and ICT, but not SSP, electrical stimulation, significantly increased the time-dependent current thresholds in elderly patients. Conclusion: Therefore, these results, in part, suggest that the TENS and ICT were shown to be a more adaptable method of stimulation, and that needed of the development of senile specialized physical therapy and the utilization of senior leisure facilities such as senior welfare center the others.

  • PDF

산업용 전기차량의 주행 모터용 보상된 Bang-Bang 전류제어기 개발 (The Development of Compensated Bang-Bang Current Controller for Travel Motor of Industry Electrical Vechicle)

  • 천영신;정영일;배종일;이만형
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.34-40
    • /
    • 1999
  • In order to establish the design technique of the robust current controller in d.c series wound motor driver system, this paper proposes a method of the compensated Bang-Bang current control using d.c series wound motor driver system under the improperly variable load to get minimum time for the torque control. The compensated Bang-Bang current controller structure is simpler than that of PID plus Bang-Bang controller. This paper shows that a general 16 bits microprocessor is efficiently used to implement such an algorithm. The calculation time of software is extremely small when compared with that of conventional PID plus Bang-Bang controller. Both nonlinear operating characteristics of digital switching elements and describing function methods are used for the analysis and synthesis. Real-time implementation of the compensated Bang-Bang current controller is achieved. The concept of design strategy of the control and the PWM waveform generation algorithms are presented in this paper.

  • PDF

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Method to Prevent the Malfunction Caused by the Transformer Magnetizing Inrush Current using IEC 61850-based IEDs and Dynamic Performance Test using RTDS Test-bed

  • Kang, Hae-Gweon;Song, Un-Sig;Kim, Jin-Ho;Kim, Se-Chang;Park, Jong-Soo;Park, Jong-Eun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1104-1111
    • /
    • 2014
  • The digital substations are being built based on the IEC 61850 network. The cooperation and protection of power system are becoming more intelligent and reliable in the environment of digital substation. This paper proposes a novel method to prevent the malfunction caused by the Transformer Magnetizing Inrush Current(TMIC) using the IEC 61850 based data sharing between the IEDs. To protect a main transformer, the current differential protection(87T) and over-current protection(50/51) are used generally. The 87T IED applies to the second harmonic blocking method to prevent the malfunction caused by the TMIC. However, the 50/51 IED may malfunction caused by the TMIC. To solve that problem, the proposed method uses a GOOSE inter-lock signal between two IEDs. The 87T IED transmits a blocking GOOSE signal to the 50/51 IED, when the TMIC is detected. The proposed method can make a cooperation of digital substation protection system more intelligent. To verify the performance of proposed method, this paper performs the real time test using the RTDS (Real Time Digital Simulator) test-bed. Using the RTDS, the power system transients are simulated, and the TMIC is generated. The performance of proposed method is verified in real-time using that actual current signals. The reaction of simulated power system responding to the operation of IEDs can be also confirmed.

경피두개직류자극 적용 시 비활성 전극의 위치가 뇌졸중 환자의 인지반응에 미치는 영향 (Effect of Applying tDCS by Inactive Electrode Placement to Cognitive Response on Stroke Patients)

  • 황기경;이정우
    • 대한임상전기생리학회지
    • /
    • 제11권1호
    • /
    • pp.31-38
    • /
    • 2013
  • Purpose : This study was to identify the effect of cognitive reaction following inactive electrode placement when applying anodal transcranial direct current stimulation over the primary motor cortex. Methods : For this study a total of 28 stroke patients participated. Before applying transcranial direct current stimulation, cognitive reaction was measured (P300 of event related potential, cognitive reaction time), and subjects were randomly assigned to two group. Transcranial direct current stimulation was applied to the scalp with an intensity of $0.04mA/cm^2$ for 15 minutes. All subjects were given an anode transcranial direct current stimulation over the primary motor area and inactive electrodes over the deltoid muscle (group I) and supra-orbital area (group II). Cognitive reactions were measured after applying transcranial direct current stimulation. Results : For this study a total of 28 stroke patients participated. Before applying transcranial direct current stimulation, cognitive reaction was measured (P300 of event related potential, cognitive reaction time), and subjects were randomly assigned to two group. Transcranial direct current stimulation was applied to the scalp with an intensity of $0.04mA/cm^2$ for 15 minutes. All subjects were given an anode transcranial direct current stimulation over the primary motor area and inactive electrodes over the deltoid muscle (group I) and supra-orbital area (group II). Cognitive reactions were measured after applying transcranial direct current stimulation. Conclusion : Thus transcranial direct current stimulation on the primary motor area may help cognitive reaction regardless of inactive electrode placement.

토끼 심방근에서 Na-Ca 교환 전류에 대한 Bay K, cAMP, Isoprenaline 효과 (Effects of Bay K, cAMP and Isoprenaline on the Na-Ca Exchange Current of Single Rabbit Atrial Cells)

  • 호원경;엄융의
    • The Korean Journal of Physiology
    • /
    • 제24권2호
    • /
    • pp.377-388
    • /
    • 1990
  • Ca movements during the late plateau phase in rabbit atrium implicate Na-Ca exchange. In single atrial cells isolated from the rabbit the properties of the inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The inward currents were recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of -70 mV. Followings are the results obtained: 1) When stimulated every 30 sec, the inward currents were activated and reached peak values $6{\sim}12\;ms$ after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2) The current decayed spontaneously from the peak activation and the timecourse of the relaxation showed two different phases: fast and slow phase. 3) The recovery of the inward current was tested by paired pulse of various interval. The peak current recovered exponentialy with a time course similar to that of Ca current recovery. 4) Relaxation timecourse was also affected by pulse interval and time constant was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5) The peak inward current was increased by long prepulse stimulation, Bay K, isoprenaline or c-AMP. 6) The relaxation time constant of the inward current was prolonged by Bay K or c-AMP, and shortened by isoprenaline. From the above results, it could be concluded that increase of the calcium current potentiates and prolongs intracellular calcium transients, while shortening of the timecourse by isoprenaline or short interval stimulations might be due to the facilitation of Ca uptake by SR.

  • PDF

순환전류를 이용한 ITER Vertical Stabilization 컨버터의 출력 제어 (Output Control of ITER Vertical Stabilization Converter with Circulating Current Technique)

  • 정교범;지준근;목형수
    • 전력전자학회논문지
    • /
    • 제14권5호
    • /
    • pp.379-386
    • /
    • 2009
  • ITER 핵융합 장치에 사용되는 Vertical Stabilization(VS) 컨버터는 4상한 운전 모드의 대용량 부하에 전력을 공급하기 위해서 4개의 직렬구조 12펄스 컨버터를 역병렬 연결하여 구성한다. 스위칭 소자로 싸이리스터를 사용하는 VS 컨버터는 정역 운전모드 변환과정에서 컨버터의 안전운전을 위해 Dead Time 구간을 필요로하며, 이 과정에서 유도성 부하에 영(Zero)전류 불연속 구간이 발생하는 단점이 있다. VS 컨버터의 출력 전류제어에 순환전류를 이용할 경우에는 빠른 정역 운전모드 변환이 가능하며, 부하에 발생하는 영전류 불연속 구간을 제거할 수 있다. 본 논문은 ITER VS 컨버터에서 출력전류의 정역 운전을 위해 순환전류를 이용하는 부하 전류제어 알고리즘을 제안하고, PSIM 시뮬레이션을 통해 결과를 검증하였다.

션트저항을 이용한 3상 인버터의 전압 변조지수 증대 (Improvement of Modulation Index in 3-phase Inverters using Shunt Resistors)

  • 김정대;최종우
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.374-382
    • /
    • 2018
  • This paper has done a hardware-based approach to increase the modulation index in 3-phase inverters, unlike the conventional software algorithm-based approaches. The minimum required time to measure the currents in a three-phase inverters with shunt resistors has also been analyzed. By the analysis, the longest time in minimum required time is AD conversion time. To shorten the minimum required time, this paper proposed a sample-and-hold(S/H) circuit implemented at the inverter current signal output to retain the current signal. When the linear operation region of an inverter with S/H was compared with that without it, the modulation index was increased by 7.8 %. Inverters with S/H circuits can employ the traditional software algorithms, such as the voltage injection method or current restoration method, and it will yield further increase the modulation index.

프린터 카트리지 충전생산라인의 생산성향상 사례연구 (A Case Study of Productivity Improvement in Filling a Print Cartridge with Toner)

  • 양주만;양문희
    • 산업공학
    • /
    • 제24권3호
    • /
    • pp.258-266
    • /
    • 2011
  • In this paper, we deal with a problem improving the productivity of a discrete production line for filling a printer cartridge with toner. We develop a new technology for controlling the weight of toner which must be filled in a cartridge and reform the current line based on our new control technology to result in more than 35% improvement of productivity as well as the control accuracy. In detail, first, we find a bottleneck process, the toner-filling process which gives the current production cycle times. Second, we divide the processing time of the bottleneck into several work elements and find the rotation time of an AC servomotor to be further reduced. Third, in order to reduce the rotation time, we develop a mathematical control-time model for determining the rotation time. Finally, we reform the current line partially as required by the change of the new control method.