• Title/Summary/Keyword: time to harvest

Search Result 971, Processing Time 0.035 seconds

Changes in Total Polyphenol Contents and DPPH Radical Scavenging Activity of Agrimonia pilosa According to Harvest Time and Various Part (수확시기별, 부위별 선학초의 폴리페놀함량 및 DPPH 라디컬 소거능의 변화)

  • Jang, Sang-Hun;Yu, Eun-Ae;Han, Ki-Soo;Shin, Sung-Chul;Kim, Hee-Kyu;Lee, Sang-Gyeong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.6
    • /
    • pp.397-401
    • /
    • 2008
  • Changes in the contents of total phenolic compounds in as Agrimonia pilosa well as their antioxidant capacity according to the havest time and positions were examined. The contents of the total phenolic compounds were determined by extraction with MeOH. Among havest times harvestry in July showed highest contents of the total phenolic compounds and harvestry in May showed lowest contents of the phenolic compounds. Among the 4 positions (root, branch, leaf, flower) of Agrimonia pilosa the root contained highest contents of the phenolic compounds. The antioxidant capacities of Agrimonia pilosa were increased roughly with increasing level of contents of phenolic compounds according to positions.

Sudies on the Storage of Onions by Radiation (1) (방사선(放射線)을 이용(利用)한 양파저장(貯藏)에 관(關)한 연구(硏究) (1))

  • Park, Nou-Poung;Choi, Eon-Ho;Byun, Kwang-Eui
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.84-89
    • /
    • 1972
  • An experiment was carried out to investigate the optimum doses of gamma-irradiation for sprouting inhibition of onion bulbs with irradiation time and storage conditions. The results. obtained are as follows: 1) The irradiation doses of 5, 7 and 10 krad, respectively, at 11, 32 and 66 days after harvest were sufficient to inhibit subsequent sprout of onion bulbs obtained from Nampyeong district. When they were irradiated at 96 day after harvest, however, there was little sprout-inhibition by 15 krad. In case of onion bulbs obtained from Changnyeong district, sprout was inhibited by doses of 8 and 12 krad respectively, at 51 and 89 days after harvest. 2) Low-temperature storage after irradiation was not effective in sprout-inhibition of onion bulbs. Onion bulbs stored at low temperature of $5^{\circ}C$ rather showed higher sprouting rate as compared with that of room temperature. 3) Rot increased in irradiated lot and at room temperature, and spores of Aspergillus sp. were little germinated at a level of 100 krad. 4) The respiratory rate of irradiated onion bulbs was higher immediately after irradiation but lower one week after irradiation than control. Respiratory quotient of tissues seems to be little affected by gamma-irradiation.

  • PDF

Effects of Planting Density and Cutting Height on Production of Leaves for Processing Raw Materials in Goji Berry (구기자나무의 재식밀도 및 예취높이가 가공용 잎 생산에 미치는 영향)

  • Paik, Seung Woo;Lee, Jeong;Yun, Tug Sang;Park, Young Chun;Lee, Bo Hee;Son, Seung Wan;Ju, Jung Il
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.136-141
    • /
    • 2020
  • Background: The leaves of the goji berry (Lycium chinense Mill.) are used as raw materials in processing and by replace fruits to some extent. The reason is that the leaves are cheaper, however, betaine content is higher than in the fruits. These experiments were conducted to determine the planting density and cutting height for producing a large number of leaves. Methods and Results: The cultivar 'Myeongan' with many branches was used. When the shoot height reached 50 cm - 70 cm, harvesting was possible four times a year. The time to next harvest was approximately 38 days after regeneration of new shoots. Leaf quantity was in the order of 1st > 2nd > 4th > 3rd harvest. Insect damage occurred during the third harvest in late July and early August, therefore, eco-friendly control was necessary. The total yield was higher at the planting density 60 cm × 30 cm than that of 60 cm × 20 cm or 60 cm × 40 cm. The yield at cutting for shoot height of 60 cm was increased by 6.3 percent compared to that of 50 cm, At the cutting height of 70 cm, harvest was difficult owing to hardening of stems and thorns. Betaine content, an indicator component of goji berry, was not significantly different according to planting densities and cutting height. Conclusions: The ideal cutting period to produce leaves of goji berry for processing is when the shoots grow to approximately 60 cm, and the leaves can be harvested 4 times a year. The dried-leaf yield was highest at the planting density of 60 cm × 30 cm.

Development of robust Calibration for Determination Apple Sweetness using Near Infrared Spectroscopy

  • Sohn, Mi-Ryeong;Kwon, Young-Kil;Cho, Rae-Kwang
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1614-1614
    • /
    • 2001
  • The sweetness (。Bix) of fruit is the main quality factor contributing to the fruit taste. The brix of the apple fruit can be measured non-destructively by near infrared (NIR) spectroscopy, allowing the sweetness grading of individual apple fruit. However, the fruit quality is influenced by various factors such as growing location, producing year, variety and harvest time etc., accordingly the robust NIR calibration is required. In this experimental results are presented the influence of two variations such as growing location and producing year of apple fruit in establishing of calibrations for sweetness, and developed a stable and highly accurate calibration. Apple fruit (Fuji) was collected every year from 1995 to 1997 in 3 different growing locations (Andong, Youngchun and Chungsong) of Kyungpook in Korea. NIR reflectance spectra of apple fruit were scanned in wavelength range of 1100∼2500nm using an InfraAlyzer 500C (Bran+Luebbe) with halogen lamp and PbS detector. The multiple linear regression and stepwise was carried out between the NIR raw spectra and the brix measured by refractometer to select the best regression equations. The calibration models by each growing district were well predicted to dependent sample set, but poorly predicted to independent sample set. Combined calibration model using data of three growing districts predicted reasonable well to a population set drawn from all growing districts(SEP = 0.69%, Bias=-0.075). The calibration models by each harvest year were not transferable across harvest year, however a combined calibration model using data of three harvest years was sufficiently robust to predict each sample sets(SEP = 0.53%, Bias = 0.004).

  • PDF

Development of crop harvest prediction system architecture using IoT Sensing (IoT Sensing을 이용한 농작물 수확 시기 예측 시스템 아키텍처 개발)

  • Oh, Jung Won;Kim, Hangkon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • Recently, the field of agriculture has been gaining a new leap with the integration of ICT technology in agriculture. In particular, smart farms, which incorporate the Internet of Things (IoT) technology in agriculture, are in the spotlight. Smart farm technology collects and analyzes information such as temperature and humidity of the environment where crops are cultivated in real time using sensors to automatically control the devices necessary for harvesting crops in the control device, Environment. Although smart farm technology is paying attention as if it can solve everything, most of the research focuses only on increasing crop yields. This paper focuses on the development of a system architecture that can harvest high quality crops at the optimum stage rather than increase crop yields. In this paper, we have developed an architecture using apple trees as a sample and used the color information and weight information to predict the harvest time of apple trees. The simple board that collects color information and weight information and transmits it to the server side uses Arduino and adopts model-driven development (MDD) as development methodology. We have developed an architecture to provide services to PC users in the form of Web and to provide Smart Phone users with services in the form of hybrid apps. We also developed an architecture that uses beacon technology to provide orchestration information to users in real time.

Effect of Harvest Time and Infective Juvenile Size of the Entomopathogenic Nematode, Steinernema arenarium, on Pathogenicity, Development, and Propagation (곤충병원성선충, Steinernema arenarium의 수확시기와 유충 체장이 병원성과 발육 및 증식에 미치는 영향)

  • Han, Gun-Yeong;Lee, Dong-Woon;Choo, Young-Moo;Choo, Ho-Yul
    • Korean journal of applied entomology
    • /
    • v.51 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • The size of infective $Steinernema$ $arenarium$ juveniles is variable and ranges from 724 to 1408 ${\mu}m$. Effects of harvest time and infective juvenile size on pathogenicity, development, and reproduction were examined in the last instar of the great wax moth, $Galleria$ $mellonella$. Harvest time of infective juveniles (IJs) of $S.$ $arenarium$ affected pathogenicity. IJs harvested at the 10th day from trapping were more pathogenic than those harvested the 3rd day from trapping. Mortality of $G$. mellonella also depending on harvest time, $i.e$, 100% died within 48h when IJs were harvested at the 10th day, without relation to size. However, mortality was 40% in the small size group (SSG) compared with 18% in the large size group (LSG) within 48h when IJs were harvested at the 3rd day. Establishment of $S.$ $arenarium$ within the host was different depending on IJ size. The number of established IJs was 1.8 in the SSG, 3.3 in the LSG, and 3.2 in the mixed size group (MSG) when IJs were harvested at the 3rd day, and 5.3 in the SSG, 7.4 in the LSG, and 7.6 in the MSG when IJs were harvested at the 10th day. The length of the female adult was 7,070.5 ${\mu}m$ in the SSG and 7,893.9 ${\mu}m$ in the LSG and that of the male was 1,460.5 ${\mu}m$ in the SSG and 1,688.2 ${\mu}m$ in the LSG when IJs were harvested at the 3rd day. The length of the female adult was 7,573.6 ${\mu}m$ in the SSG and 8,305.4 ${\mu}m$ in the LSG and that of the male adult was 1,733.4 ${\mu}m$ in the SSG and 1,794.4 ${\mu}m$ in the LSG when IJs were harvested at the 10th day. Harvest time and size of IJs did not influence numbers of progeny or size of IJS.

Investigation of harvest time of paddy rice for green whole rice grains considering transplanting time and nitrogen fertilization

  • Cho, Jin-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.629-636
    • /
    • 2019
  • This study was conducted to investigate the growth characteristics and yield of whole green rice grains during the ripening period. These were investigated using Hopumbyeo and Unkwangbyeo at two transplanting times and with two kinds of nitrogen fertilization. The transplanting times were May 30 and June 20, respectively, using 30-day seedling culture and transplanting conducted with 3 - 4 plants per hill in planting space of $15cm{\times}30cm$. During nitrogen fertilization, 9 kg and 18 kg was used, respectively. The harvest of the green whole rice grains was carried out on the 15th, 20th, 25th, 30th, and 40th day after the heading date. The clum length was greater with later planting and with application of more nitrogen. The rice yield was higher with nitrogen fertilization of 18 kg/10 a when transplanted on May 30 for Hupumbyeo, and for Unkwangbyeo, was higher at 9 kg/10 a nitrogen fertilization when transplanted on May 30. The protein content of Hopumbyeo was higher when the nitrogen fertilizer was 18 kg/10 a, and that of Unkwangbyeo was lower than that when transplanting on June 20. The greenness was not related to the nitrogen fertilization level when transplanted on May 20 but for later transplanting, the greenness was higher when the nitrogen application was increased, and the greenness was the greatest about 30 days after the heading date.

Softening of Astringent Persimmon (Diospyros kaki Thunb.) as Affected by Harvest Time, Temperature, and Ethephon Treatment (수확기, 온도 및 Ethephon 처리에 따른 떫은감 (Diospyros kaki Thunb.)의 연화)

  • Park, Seo-Jun;Hong, Seong-Sig;Lee, Chong Suk
    • Horticultural Science & Technology
    • /
    • v.18 no.3
    • /
    • pp.395-398
    • /
    • 2000
  • This study was conducted to evaluate the effect of harvest time, temperature and ethephon on the softening of astringent persimmon 'Cheongdobansi'. The persimmon was harvested on Sep. 21 (early season harvesting) and Oct. 11 (optimum season harvesting). Quality changes were evaluated at 10, 15 and $20^{\circ}C$ after ethephon treatment. Seventy percent of hardness decrease occurred during the first 2 days of treatment at 15 and $20^{\circ}C$, and hardness was slowly decreased after 6 days. The treatment of $10^{\circ}C$ was not effective on inducing fruit softening. Soluble tannin content was sharply decreased 6 days after ethephon treatment at 15 and $20^{\circ}C$ regardless the harvest time, whereas this was much slower in control. Hunter 'L' and 'b' values were increased until 2 days, and then decreased with the early harvested persimmon. The Hunter values were decreased until the 8th day of storage in fruit harvested at optimum season.

  • PDF

Establishment of Herbicide Screening Methods for Reed (Phragmites communis Trin.) Control - I. Propagation of Reed (갈대(Reed, Phragmites communis Trin.)의 방제를 위한 제초제 스크리닝방법의 확립 - I. 갈대의 육묘)

  • Hwang, I.T.;Choi, J.S.;Lee, H.J.;Hong, K.S.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 1996
  • This experiment was conducted to find out an effective propagation method for reed(Phragmites communis Trin.), ensuring a continuous herbicide screening for reed control. Reed propagation methods were compared under a greenhouse condition using tour different materials; seeds, rhizomes, depressed stolons of P. japonica Steud., and stem cuttings. Although reed seeds were easy to harvest and store, their germination rate(${\leq}$5%) was very low and seedling growth from the seeds was slow. Rhizomes were difficult to harvest and their harvest time was limited from November to March. Furthermore, reed propagation using rhizomes had problems of a relatively low germination rate(46%), no uniformity in size and shape, individual differences at the early stage of growth, and difficulties in material storage. Rate of reed growth from rhizomes was higher in commercial soil mix(Boo Nong soil) than in sand or in sand+upland soil(1:1). Depressed stolons of P. japonica had a moderate germination rate(65%) and were relatively easy to harvest. However, their harvest time was limited only from August to September. Propagation method using stem cuttings had several advantages over the above methods using other materials. Reed plants could uniformly be propagated from the stem cuttings with a relatively high germination rate(75%). Stem cuttings of central nodes showed a higher germination rate compared to those of upper or lower nodes. Stem cuttings from the field should be used immediately after harvest, since their germination rate decreased rapidly when they were stored under a wet- or a dry-refrigerated condition. Furthermore, the germination of stem cuttings tended to decrease when they were collected from the field after August. This indicates that there is a limitation of harvest time for stem cuttings. However, a year-round propagation of reed using stem cuttings is possible if parent plants are grown in a greenhouse, and thus herbicide screening for reed control could continuously be performed.

  • PDF

Comparison of forage yields and growth of sorghum, proso millet and japenase millet according to cropping system with italian ryegrass

  • Kim, Jihye;Cho, Jin-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • The species of forage crops used in this study were Italian ryegrass (cv. Kowenery), sorghum (cv. SX17), proso millet (cv. domestic) and Japanese millet (cv. Jeju). The plant height of the summer crops was the highest at the dough stage. The dry matter yield of Italian ryegrass was 902.7 kg per 10 a. The dry matter yield of the winter crop and sorghum was 11,985 kg when harvested at the dough stage rather than at the first and second harvests. The proso and Japanese millet also had higher yields for dry matter during the dough stage rather than during heading and regeneration. The acid detergent fiber (ADF) content of Sorghum was lower than that of the first and second harvest; however, the proso and Japanese millet had a higher ADF content at the dough stage. The neutral detergent fiber (NDF) content was higher at the dough stage than at the first and second harvest, and the crude protein content was also lower at the dough stage than at the first and second harvest. The crude protein production for the dry matter yield was about 84 kg in Sorghum when harvested at the dough stage. Proso millet showed no difference for the crude protein production at the heading and dough stage while the Japanese millet had a higher crude protein production. There were no differences in the total digestible nutrients (TDN) content for the three crops according to the harvesting time. Therefore, if Sorghum and Proso and Japanese millet are to be combined with Italian ryegrass, it is better to harvest them at the dough stage.