• 제목/요약/키워드: time of concentration ratio

검색결과 1,296건 처리시간 0.032초

Advanced Treatment of Wastewater from Food Waste Disposer in Modified Ludzack-Ettinger Type Membrane Bioreactor

  • Lee, Jae-Woo;Jutidamrongphan, Warangkana;Park, Ki-Young;Moon, Se-Heum;Park, Chul
    • Environmental Engineering Research
    • /
    • 제17권2호
    • /
    • pp.59-63
    • /
    • 2012
  • This paper proposes a modified Ludzack-Ettinger (MLE) type membrane bioreactor (MBR) as a method of treatment for wastewater from food waste disposer. Micro-membrane filtration allows for an extremely low concentration of suspended solids in the effluent. The effluent of the reactor in question is characterized by a relatively high level of non-biodegradable organics, containing a substantial amount of soluble microbial products and biomass. Results obtained in this paper by measurement of membrane fouling are consistent with biomass concentration in the reactor, as opposed to chemical oxygen demand (COD). The MLE process is shown to be effective for the treatment of wastewater with a high COD/N ratio of 20, resulting in are markedly high total nitrogen removal efficiency. Denitrification could be improved at a higher internal recycle ratio. Despite the low concentration of influent phosphorus, the phosphorus concentration of the outflow is seen to be relatively high. This is because outflow phosphorous concentration is related to COD consumption, and the process operates at along solids retention time.

육수학적 특성에 따른 국내 저수지의 부영양화 유형분석 -엽록소 a와 수심을 중심으로 (Analysis of Eutrophication Based on Chlorophyll-a, Depth and Limnological Characteristics in Korean Reservoirs)

  • 김호섭;황순진
    • 생태와환경
    • /
    • 제37권2호통권107호
    • /
    • pp.213-226
    • /
    • 2004
  • 본 연구에서는 엽록소 a 농도와 저수지의 수심을 토대로 유형을 분류하고 각 유형에서의 수질특성을 평가하였다. 486개의 저수지를 대상으로 엽록소 a 농도 25 ${\mu}g\;L^{-1}$와 수심 7.5m를 기준으로 4가지 유형으로 분류하였다. 각 호수에서의 연평균 최대 엽록소 a 농도를 기초로 OECD와 TSI 기준에 따라 평가 시 각각 34.3%와 72.8%가 부영양상태였다. 엽록소 a 농도 25 ${\mu}g\;L^{-1}$를 기준으로 구분된 유형들에서 총질소 농도(2배) 보다는 총인 (4배)의 농도차이가 크게 나타났다. TN/TP비를 토대로 할 때 인이 제한 영양염으로 나타났고, 영양상태가 높은 저수지들에서 인에 대한 제한정도가 큰 것으로 나타났다. 엽록소 a 농도가 가장 높은 TYPE II에 포함된 저수지는 상대적으로 노후된 시설이 많고 DA/LA비가 작으며 체류시간이 길고 유역 내 논과 밭으로 이용되는 면적이 넓고 유역에서 발생하는 오염부하가 많았다. 비록 유역면적이 유역내에서의 오염물질 발생부하량과 관련된 요인으로 고려될 수 있으나 수질과의 뚜렷한 상관성이 없었다. 본 연구에서 수심이나 시설물의 노후정도와 같은 형태학적인 특성과 더불어 유역 내의 토지이용형태는 저수지의 수질을 결정하는 매우 주요한 인자로 나타났고 수질 특성을 평가함에 있어 효과적인 인자로 제시되었다.

효소 가수분해 향상을 위해 glycerol 수용액을 사용한 폐지의 전처리 (Pretreatment of Wastepaper using Aqueous Glycerol to enhance Enzymatic Hydrolysis)

  • 서동일;김창준;김성배
    • KSBB Journal
    • /
    • 제28권1호
    • /
    • pp.48-53
    • /
    • 2013
  • Pretreatment of wastepaper using aqueous glycerol was investigated to enhance the enzymatic hydrolysis. The effects of four factors (solid/liquid ratio, glycerol concentration, acid concentration, and reaction time) on the dissolution yield, the removal of cellulose, hemicellulose and lignin, and the enzymatic digestibility were examined at $150^{\circ}C$. The 1/8 of solid/liquid was determined to perform the reaction uniformly, and the 93% of glycerol concentration was found to be a minimum concentration to conduct the reaction under atmospheric pressure. Also, it was found that the acid concentration and reaction time were strongly related to the dissolution yield and the removal of cellulose, hemicellulose and lignin, but moderately to the enzymatic digestibility. At an optimum condition of $150^{\circ}C$, 1 h and 1% acid concentration, 56% and 49% of hemicellulose and lignin, respectively, were removed, while only 4% of cellulose was removed. The enzymatic digestibility at this condition was 86%, meaning that 83% of the glucan present in the initial substrate was converted to glucose. Compared to glycerol with ethylene glycol as a pretreatment solvent, glycerol is much cheaper than ethylene glycol, but ethylene glycol is superior to glycerol in delignification.

감압증발법을 이용한 매립장 침출수 처리에 관한 연구 (A Study on Landfill Leachate Treatment by Reduced Pressure Evaporation.)

  • 문추연;은종극;이태호
    • 환경위생공학
    • /
    • 제12권3호
    • /
    • pp.73-79
    • /
    • 1997
  • This research was intended as an investigation of applying Reduced Pressure Evaporation as efficient treatment method for landfill leachate. According to the variance of time, temperature, pressure and pH in experiments, the properties of leachate treatment are follows. The removal efficiencies of COD, NH$_{3}$-N, TOC, Conductivity and SS on the basis of reaction time was 96.4%-97.5%, -1.4%-53.7%, 81.7%-89.0%, 92.0%-95.3% and 99.86%-99.97%, respectively. When the pH of Influent was 7.5, the pH of effluent was increased to 10-11 with time elapse. It is concluded that the orgin of pH increase may be ammonia. When the properties of concentrate were investigated at the concentration ratio 90%(V/V), concentration difficiency represented in the ratio of experimental value/calculated value had following orders ; COD>TOC>NH$_{3}$-N>Conductivity>SS. Concentrate had good precipitation because of additive thermal treatment in the process. When evaporation experiments with pH adjustment of 4.0, 6.0, 7.5, 9.0 and 10.0 were performed ; Acidic evaporation experiments(pH 4.0, 6.0) showed low removal efficiency(81.6, 87.6%) of COD and high removal efficiency (97.5%. 84.6%) of NH$_{3}$-N at initial evaporation. Basic evaporation(pH 9.0, 10.0) showed high removal efficiency (97.2%, 98.9%) of COD and very low removal efficiency (-7.4%, -27.2%) of NH$_{3}$-N at initial evaporation.

  • PDF

식혜제조 조건이 식혜밥알의 형태에 미치는 영향 (Effect of Sikhye Manufacturing Conditions on the Rice Shape)

  • 김수권;김중만;최용배
    • 한국식생활문화학회지
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2000
  • This study was to investigate the effects of concentration of malt extract in Sikhye manufacture on saccharification time, shapes of saccharified rice(the cooked rice) and sensory evaluation score of Sikhye. The optimum concentration of malt extract to reduce saccharification time and to keep desirable shapes of saccharified rice was 4 times (rice 24g, malt 28g and D.W. 240ml) as suitable as base composition formula(rice 6g, malt 7g and D.W. 240ml). The shapes of saccharified rice were influenced by the concentration of malt extract, the saccharification time and the shapes of steamed rice before saccharification. A good taste(softness) of Sikhye rice and the desirable shapes of saccharified rice were more suitable in the case of a small amount of unsaccharified starch than in the case of finishing saccharification. The optimum saccharification time to keep the desirable shapes of saccharified rice was 240min and also was desirable between 210 and 270min. To keep a good taste(softness) and the desirable shapes of saccharified rice, and to reduce the manufacturing time, it is desirable to in mass production of Sikhye add 3 times more water after making Sikhye in the ratio of rice 24g, malt 28g and water 240ml. In this case the whole amount will become 4 times as much as the original one.

  • PDF

Removal study of As (V), Pb (II), and Cd (II) metal ions from aqueous solution by emulsion liquid membrane

  • Dohare, Rajeev K.;Agarwal, Vishal;Choudhary, Naresh K.;Imdad, Sameer;Singh, Kailash;Agarwal, Madhu
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.201-208
    • /
    • 2022
  • Emulsion Liquid Membrane (ELM) is a prominent technique for the separation of heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of the components (Surfactant and Carrier) of ELM is a very significant step for its preparation. In the ELM technique, the primary water- in-oil (W/O) emulsion is emulsified in water to produce water-in-oil-in-water (W/O/W) emulsion. The water in oil emulsion was prepared by mixing the membrane phase and internal phase. To prepare the membrane phase, the extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2- ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II). Emulsion Liquid Membrane (ELM) is a well-known technique for separating heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of ELM components (Surfactant and Carrier) is a very significant step in its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified to produce water-in-oil-in-water (W/O/W) emulsion. The water in the oil emulsion was prepared by mixing the membrane and internal phases. The extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II).

Sludge Returned CMAS에 의한 전기부속품제조공장 폐수처리

  • 김남천;이시진
    • 한국미생물·생명공학회지
    • /
    • 제25권4호
    • /
    • pp.427-433
    • /
    • 1997
  • Sludge Returned CMAS process was applied to treat the wastewater from electric accessory manufacturing company while this type of wastewater was usually treated by chemical process. This result show that the removal rate of TCOD was about 70-80% regardless of hydraulic retention time, On the contrary, the removal rate of BOD was abtained in a range of 77-92% depending on hydraulic retention time. In order to remove more than 80% of organic materials with the proposed process, the F/M ratio should be maintained below 0.17. In this case, the calculated value of organic removal rate, Km, was calculated to be 1.26 hr$^{-1}$, and the ratio of cell synthesis/total energy was 0.32 and 0.26 for COD and BOD base, respectively. The yield coefficient was calculated to be 0.242 and the half velocity coefficient was 0.3 hr$^{-1}$. The value of endogenous respiration coefficient was 0.02 hr$^{-1}$. The measured effluent BOD concentration, MLSS concentration in aeration tank, oxygen uptake rate, and sludge production were matched relatively well with the calculated values using above coefficients, In order to optimize the dewatering of sludge, the hydraulic retention time was recommended to be 15. 6 hrs. These results indicate that the wastewater from an eletric accessory manufacturing company can be treated safely with a biological process.

  • PDF

High Level O2배가스중 NO 저감에 대한 선택적비촉매환원 반응특성에 관한 연구 (A Study on Characteristic of NO Reduction by High Level O2Gas in Selective Non-Catalystic Reaction)

  • 이강우;정종현;오광중
    • 한국환경과학회지
    • /
    • 제11권6호
    • /
    • pp.577-582
    • /
    • 2002
  • Selective catalytic reduction and selective non-catalytic reduction processes are mainly used to treat nitrogen oxidants generated from fossil-fuel combustion. Especially, the selective non-catalytic reduction process can be operated more economical and designed more simply than the selective catalytic reduction. For this reason, many researchers carried out to increase the removal efficiency of nitrogen oxidants in the condition of low oxygen concentration by using the selective non-catalytic reduction process. However, this study was flue gas contained high oxygen concentration of 20(v/v%) with ammonia as a reducing agent. Moreover, it carried out experiment with many factors that are reaction temperature, retention time, initial NO concentration, NSR(normalized stoichiometric ratio). It was determined optimal operating conditions to improve NO removal efficiency with SNCR process. The De-NOx efficiency was increased with NSR, initial NO concentration and retention time increasement. This study has NO removal efficiency over 80% in the high oxygen concentration as well as low oxygen concentration. The injection of reducing agent may be considered for SNCR process and facility operation in 850$\^{C}$ of optimal condition.

한우 수란우의 혈장 요소태질소와 수태율의 관계 (Relation of Conception Rate and Plasma Urea Nitrogen in Hanwoo Recipients)

  • 박수봉;임석기;우제석;김일화;최선호;서상욱;류일선;손동수
    • 한국수정란이식학회지
    • /
    • 제14권2호
    • /
    • pp.83-88
    • /
    • 1999
  • This study was undertaken with three objectives : to determine the optimal time of blood collection for plasma urea nitrogen(PUN) analysis, to examine the frequency distribution of PUN levels in recipient herd and to relate concentration of PUN to conception rate in Hanwoo recipients. The relationship between PUN level and time postfeeding was examined for 5 individual cows. Mean concentration of PUN rose for 4hrs postfeeding and decreased to PUN level before feeding at 10hrs postfeeding. And then, the blood for PUN analysis was collected at the time before feeding in next experiments. The ratio of cows with PUN concentration of < 12, 12∼18 and 18mg/dl were 50.6, 39.9 and 9.5% in 163 recipients, individually. The pregnancy rate of cows with PUN concentration 12∼16 mg/dl (63.3%) was higher than that of cows with PUN concnetration < 12 mg/dl (46.7%) or > 16mg/dl (42.9%). There results suggest that the PUN test may be beneficial for management of recipient herd in effects to maintain or improve reproductive efficiency.

  • PDF

High Molecular Weight Poly(L-lactide) Synthesized in Supercritical Fluids

  • Kim, Soo-Hyun
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.210-211
    • /
    • 2006
  • A series of L-LA polymerizations initiated by $Sn(Oct)_{2}\;([LA]_{0}/[Sn]_{0}=200)$ were carried out in scR22 at $130^{\circ}C$ and 300 bar, where $[LA]_{0}$ is the initial L-lactide concentration and $[Sn]_{0}$ is the initial $Sn(Oct)_{2}$ concentration. The reaction time dependences of monomer conversion and PLLA MW improved. The monomer conversion and PLLA MW increased with increasing reaction time. The effect of temperature on monomer conversion and PLLA MW was investigated in a series of polymerizations conducted at temperatures ranging from 90 to $150^{\circ}C$ and at a constant pressure of 200 bar. In all of these experiments, the ratio of monomer to R22 concentration was held constant at 12.4 wt.-%. Increasing the reaction temperature from 90 to $130^{\circ}C$ resulted in increased monomer conversion from 11.5 to 72.2 %.

  • PDF