• Title/Summary/Keyword: time lapse microscopy

Search Result 12, Processing Time 0.02 seconds

AN IMMUNOHISTOCHEMICAL STUDY ON THE IMMUNOGLOBULINS OF EXPERIMENTALLY INDUCED RAT PERIAPICAL LESIONS (실험적 백서 치근단 병소에서의 면역글로불린 분포에 관한 면역조직화학적 연구)

  • Boo, Jung-Sun;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.58-76
    • /
    • 1990
  • This study was designed to elucidate the distribution of the immunoglobulins in the experimentally induced rat periapical lesions. The pulp exposure was performed in 80 molars from 40 rats and the animals were sacrificed at 15, 30, 60 and 90 days after the operation and examined and radiographed. Of the 80 samples, 56 samples were routinely sectioned ($4-6{\mu}$ in thickness) and stained with Hematoxylin-Eosin for the light microscopic examination and 50 samples were stained with toluidin blue for mast cells and 50 samples were stained using the Avidin-Biotin horseradish peroxidase for detecting the presence of Ig A, Ig E, Ig M and Ig G containing cells. The following results were obtained : 1. The periapical lesions could be observed in all of 80 teeth by radiogragh (100%) and the periapical lesions were detected in 50 samples of 51 samples by light microscopy (98%). The size of lesions increased with time lapse both by radiograph and by light microscopy(p<0.05). 2. Of the 50 samples, 19 samples were diagnosed as periapical abscesses, 18 as periapical granulomas, 10 as fibrous scar tissues and 3 cysts. 3. After pulp exposure, periapical granulomas were developed mostly in the 15 day group, with time lapse periapical abscesses and fibrous scar tissues increased. 4. In the 50 periapical lesions, the numbers of Ig G containing cell (57.2%) were prominent and the percentage of Ig A, Ig E and Ig M containing cells were 16.4%, 14.7% and 11.8% respectively. The numbers of all classes of immunoglobulin containing cell were highest in the periapical granulomas and lowest in the cysts(p<0.05). 5. The number of the mast cell and immunoglobulin containing cells decreased generally with time lapse after the pulp exposure and Ig A, Ig E, Ig M and Ig G containing cells and mast cells had the high correlation one another(>0.6).

  • PDF

Healing of the Bone around Hydroxyapatite-Coated Implants without Primary Bone Contact (초기 골 접촉이 없는 수산화 인회석 피복 임프란트 주위 골의 치유)

  • Cho, Hyung-Soo;Shin, Kwang-Yong;Kim, Heung-Joong;Park, Joo-Cheol;Han, Kyung-Yoon;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.415-433
    • /
    • 1999
  • Implant stability is the key to long-term successful outcome for osseointegrated implants. To evaluate the initial healing response of bone around HA-coated implants without primary bone contact. 21 HA-coated thread type implants(STERI-OSS?) were placed in the femurs of 5 mongrel dogs, about 1-year old. Implants, 8 mm in length and 3.8mm(experimental 1group), 5.0mm(experimental 2group) and 6.0mm(control group) in diameter, were inserted after 3 holes of 6.0mm in diameter and 10mm in depth were prepared in the surgical sites each dog. Implants were supported by only nonresorbable membrane($Teflon^{(R)}$), in order to prevent the ingrowth of upper soft tissue into the gap between bone and implant, and to maintain each implant to be positioned in the center of the drilled hole. 9 implants with different diameters were inserted in 3 dogs for histologic observation, and 12 implants were inserted in 2 dogs for mobility test and removal torque test. Fluorescent dyes were injected for the observation of new bone formation in order of $Terramycin^{(R)}$, Arizarin $Red^{(R)}$, and $Calcein^{(R)}$ at an interval of 2 weeks. 3 dogs were sacrificed for histologic observation at 4, 8, and 12-week after placement. Light microscopy and confocal laser scanning microscopy were used to qualitatively characterize the bone around HA-coated implant. 2 dogs were sacrificed for mobility test($Periotest^{(R)}$, Simens AG, Bensheim, Germany) and removal torque test($Autograph^{(R)}$ AGS-1000D series, Japan) at 8 and 12-week after placement The results were as follows: 1. Histologic observation showed that osseointegration occurred to both control and experimental groups as time lapse, but delayed bone healing was revealed in 3.8mm group (experimental 1group), compared to contrtol group and 5.0mm group (experimental 2group). 2. The mobility test showed that the experimental groups had no distinguishable movement during experimental periods of 8 and 12-week, and there was no difference in mobility depending on the gap between bone and implant, and time lapse. 3. The removal torque forces were increased depended on the gaps decreasing between bone and implant, and time lapse. The results suggest that HA-coated implant without primary bone contact, based on guided bone regeneration could obtain its stability in all experimental groups as time lapse, but bone healing was delayed in experimental group of 3.8mm. And the results suggested that studies on correlationship between mobility test and removal torque test for implant stability would be necessary.

  • PDF

Time-Lapse Video Microscopy of Wound Recovery and Reproduction in the Siphonous Green Alga Derbesia tenuissima

  • Martin, Erika;Jeremy , Pickett-Heaps;Kim, Gwang-Hoon;West, John
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.109-124
    • /
    • 2006
  • Responses to various types of mechanically induced wounding were followed in the giant-celled Caulerpalean species, Derbesia tenuissima, using time-lapse video-microscopy. Gametophyte vesicle cells. Puncture wounding: the gametophyte cell seals the puncture in 5 min. This is followed by cycles of ruptures and sealing, ending with full recovery in 24 hrs. Cut wounding: the protoplast immediately retracts away from the wall and reforms an intact, deflated protoplast that expands to fill the original cell within 21 hrs. Crush wounding (internal). When retained within the cell wall many protoplast fragments condense, round up, and coalesce; the reconstituted protoplast expands until it attains complete recovery, filling the original cell shape in 12 hrs. Crush wounding (external). Protoplast fragments extruded from the crushed cell are more numerous and smaller taking longer to recover. Most fragments become spherical, transforming into small viable cells capable of reproduction in several days. Sporophyte filaments. Crush wounding creates many small fragments that initially condense, coalesce and then expand within the wall to restore a complete filament with normal cytoplasmic streaming within 5 hrs. Reproduction: gametophyte. Our culture isolates produce more females than males (30:1). Gametangia develop one day before discharge that occurs explosively (1/6 sec) at first morning light. The vesicle cell forms successive gametangia every 14 days. Sporophyte. Each sporangium develops on a lateral branch that becomes isolated by the creation of successive basal plugs. After cytoplasmic cleavage and differentiation the stephanokont spores are discharged. The spores settle quickly and germinate forming gametophyte cells.

Classification of Tumor cells in Phase-contrast Microscopy Image using Fourier Descriptor (위상차 현미경 영상 내 푸리에 묘사자를 이용한 암세포 형태별 분류)

  • Kang, Mi-Sun;Lee, Jeong-Eom;Kim, Hye-Ryun;Kim, Myoung-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.169-176
    • /
    • 2012
  • Tumor cell morphology is closely related to its migratory behaviors. An active tumor cell has a highly irregular shape, whereas a spherical cell is inactive. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use 3D time-lapse phase-contrast microscopy to analyze single cell morphology because it enables to observe long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we calculated the Fourier descriptor that morphological characteristics of cell to classify tumor cells into active and inactive groups. We validated classification accuracy by comparing our findings with manually obtained results.

Slow Feature Analysis for Mitotic Event Recognition

  • Chu, Jinghui;Liang, Hailan;Tong, Zheng;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1670-1683
    • /
    • 2017
  • Mitotic event recognition is a crucial and challenging task in biomedical applications. In this paper, we introduce the slow feature analysis and propose a fully-automated mitotic event recognition method for cell populations imaged with time-lapse phase contrast microscopy. The method includes three steps. First, a candidate sequence extraction method is utilized to exclude most of the sequences not containing mitosis. Next, slow feature is learned from the candidate sequences using slow feature analysis. Finally, a hidden conditional random field (HCRF) model is applied for the classification of the sequences. We use a supervised SFA learning strategy to learn the slow feature function because the strategy brings image content and discriminative information together to get a better encoding. Besides, the HCRF model is more suitable to describe the temporal structure of image sequences than nonsequential SVM approaches. In our experiment, the proposed recognition method achieved 0.93 area under curve (AUC) and 91% accuracy on a very challenging phase contrast microscopy dataset named C2C12.

THE EFFECTS OF DIABETES ON THE RAT PAROTID GLAND (당뇨병이 백서의 이하선에 미치는 영향에 관한 실험적 연구)

  • Park Chull-Jea;Hwang Eui-Hwan;Lee Sang-Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.26 no.2
    • /
    • pp.75-90
    • /
    • 1996
  • The purpose of this study was to observe microscopic change of salivary gland tissue, which is a cause of xerostomia in diabetic condition; for this target, the author injected streptozotocin 0.1ml/100 gm b.w. on the rat, Sprague Dawley, to induce diabetes, and then observed microscopic changes in parotid gland tissue using light microscopy and electron microscopy. The results were as follows : 1. Parotid gland tissue of the diabetic rat was atrophied or degenerated in lapse of experimental time, but began to repair from 14 days after diabetic induction. 2. In the basal lamina of the vessel of parotid gland tissue in the diabetic rat, lamina lucida was discontinued and lamina densa was increased in thickness, but the number of capillary was gradually increased and dilated. 3. In acinic and intercalated ductal cells of parotid gland in the diabetic rat, changes of mitochondria, RER, secretory granule, free ribosome were prominent. In conclusion, the present study demonstrated that degenerative changes of the parotid gland tissue were due to not completely thickening of the basal lamina of vessels, but many other causal factors, because thickness of the basal lamina of vessels was not related with degenerative changes.

  • PDF

Characterization of the KG1a Cell Line for Use in a Cell Migration Based Screening Assay

  • Bernhard O. Palsson;Karl francis;Lee, Gyun-Min
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.178-184
    • /
    • 2002
  • High-throughput screening has become a popular method used to identify new “leads”for potentially therapeutic compounds. Further screening of these lead compounds is typically done with secondary assays which may utilize living, functioning cells as screening tools. A problem (or benefit) with these cell-based assays is that living cells are very sensitive to their environment. We have been interested in the process of stem cell migration and how it relates to the cellular therapy of bone marrow transplantation. In this study we describe a secondary, cell-based assay for screening the effects of various in-vitro conditions on Immature Hematopoietic Cell (IHC) migration. Our results have revealed many subtle factors, such as the cell's adhesive characteristics, or the effect of a culture's growth phase, that need to be accounted for in a screening protocol. Finally, we show that exponentially glowing KG1a cells (a human IHC cell line) were 10 times more motile than those in the lag or stationary phases. These data strongly suggest that KG1a cells secrete a chemokinetic factor during the exponential growth phase of a culture.

Studies on the rabbit viral hepatitis II. Electron microscopic observation of the spleen in experimentally infected rabbit (토끼의 바이러스성 간염(肝炎)에 관한 연구(硏究) II. 실험적(實驗的) 오염(汚染) 토끼 비장(脾臟)의 전자현미경적(電子顯微鏡的) 관찰(觀察))

  • Lee, Cha-soo;Kwon, Young-ran;Jyeong, Jong-sik;Shin, Tae-kyun
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.125-129
    • /
    • 1993
  • An acute fatal infectious disease in rabbits has been outbroken in Korea since 1985. This disease has been characterized as an acute hepatitis caused by viruses. However, viral pathogenesis in rabbit viral hepatitis leading to sudden death remain unclear. This report dealt with the electron microscopic findings on the spleen of experimentally infected rabbits, because spleen is one of the affected organs which have high titer of virus by a haemagglutination test. A typical crystalline array of virus was not found in the splenic cells of infected rabbits with acute hepatitis. Virus-like particles were seen within the phagosome of macrophages of the spleen. Ultrastructural changes in the spleen were severe with the lapse of time after inoculation. From these results, virus-like particles in the spleen were supposed to be phagocytosed by macrophage during viremia, while active replication of virus occurred in the liver. It was concluded that sudden death in this viral disease was caused by hepatic coma and/or circulatory disturbance.

  • PDF

Apoptosis in the craniofacial tissues of irradiated growing rats

  • Heo Min-Suk;Choi Hang-Moon;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won
    • Imaging Science in Dentistry
    • /
    • v.31 no.4
    • /
    • pp.227-233
    • /
    • 2001
  • Purpose: The purpose of this study was to investigate the apoptosis induction in tissues constituting the craniofacial region of growing rat by irradiation. Materials and Methods: The submandibular gland, brain, articular cartilage of condylar head, and calvarium were extracted from 20-day-old rats irradiated 10 Gy. Apoptosis of each tissue was examined by DNA fragmentation and estimated quantitatively using apoptotic index on TUNEL assay. Apoptotic index of each tissue was calculated by the equation for apoptotic cells/total cells × 1,000 on the images of confocal laser scanning microscopy. Apoptotic index was analyzed statistically according to the time lapse after irradiation on the tissues. Results : In the submandibular gland, apoptotic index was significantly increased from 6 hours after irradiation showing the highest value at 12 hours and decreased to the control level at 3 days after irradiation. In the brain, apoptotic index was abruptly reached to the maximum value at 6 hours after irradiation and decreased to the control level at 4 days after irradiation. Articular cartilage and calvarium showed no or little apoptotic signals. The results obtained by the apoptotic index accorded with that of DNA fragmentation. Conclusion : Radiation was closely related with the apoptosis of submandibular gland and brain but, not related with the apoptosis of the articular cartilage of condylar head and calvarium. The changes induced by radiation of the hard tissues would not be explained by apoptosis.

  • PDF

Morphological Study on the Changes in the Kidney of the Water-deprived Mongolian gerbil (Meriones unguiculatus) (절수에 의한 Mongolian gerbil 신장조직의 변화에 관한 형태학적 연구)

  • Kim, Moo-Kang;Lee, Keun-Jwa;Jeong, Young-Gil;Song, Chi-Won;Lee, Kyeng-Youl;Park, Il-Koun;Lee, Chul-Ho;Lee, Ki-Houn;Hyun, Byung-Hwa;Kim, Gil-Soo
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.433-452
    • /
    • 1997
  • Mongolian gerbil (Meriones unguiculatus) has been as an animal model for studing the neurological diseases such as stroke and epilepsy because of the congenital incompleteries in Willis circle, as well as the investigation of water metabolism because of the long time-survival in the condition of water-deprived desert condition, compared with other species animals. In order to accomplish the this research, first of all another divided the laboratory animals 5 groups of which each group include the 5 animals. In this study were investigated the histological structure in the kidney, measured the plasma osmolalities at the time of sacrifice of indivisual animals, and the body weights every day during water-deprived. The results obtained in this study were summarized as followings: 1. The body weights and decreasing rates of the body weight in water-deprived mongolian gerbil groups were continuosly decreased. 2. The plasma osmolalities were increased from the 5th water-deprived day, after then the gradually increasing reached nearly its equilibrium state at the 10th water-deprived day. 3. The urine volumes were abruptly decreased from the 2th water-deprived day, after then the gradually decreasing patterns were reached nearly its equilibrium state at the 10th day, and stopped the 11th day. 4. In the light microscopical observation of the kidney, glomerular capillary loop thickening, mesangial matrix increasing, sclerosis, glomerular cystic atrophy, interstitial fibrosis, tubular dilatation, mononuclear interstitial inflammation, interstitial mineralization, and hyperplasia of the collecting duct epithelium in the cortex area, were observed from the 10th water deprived day, and the lesions were gradually severe changed as the time lapse. 5. In the electron microscopical findings of the kidney, the degenerative changes of endothelial cell, podocyte and mesangial cell in glomeruli were initially observed on the 10th water-deprived day as well as the degeneration of microvilli and intracellular organelle in the renal tubules.

  • PDF