• Title/Summary/Keyword: time based prediction model

Search Result 1,465, Processing Time 0.026 seconds

Potential Mapping of Mountainous Wetlands using Weights of Evidence Model in Yeongnam Area, Korea (Weight of Evidence 기법을 이용한 영남지역의 산지습지 가능지역 추출)

  • Baek, Seung-Gyun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-33
    • /
    • 2013
  • Weight of evidence model was applied for potential mapping of mountainous wetland to reduce the range of the field survey and to increase the efficiency of operations because the surveys of mountainous wetland need a lot of time and money owing to inaccessibility and extensiveness. The relationship between mountainous wetland location and related factors is expressed as a probability by Weight of evidence model. For this, the spatial database consist of slope map, curvature map, vegetation index map, wetness index map, soil drainage rating map was constructed in Yeongnam area, Korea, and weights of evidence based on the relationship between mountainous wetland location and each factor rating were calculated. As a result of correlation analysis between mountainous wetland location and each factors rating using likelihood ratio values, the probability of mountainous wetlands were increased at condition of lower slope, lower curvature, lower vegetation index value, lower wetness value, moderate soil drainage rating. Mountainous Wetland Potential Index(MWPI) was calculated by summation of the likelihood ratio and mountainous wetland potential map was constucted from GIS integration. The mountain wetland potential map was verified by comparison with the known mountainous wetland locations. The result showed the 75.48% in prediction accuracy.

Atmospheric Turbulence Simulator for Adaptive Optics Evaluation on an Optical Test Bench

  • Lee, Jun Ho;Shin, Sunmy;Park, Gyu Nam;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However, this type of prediction based on various assumptions can occasionally produce outcomes which are far from actual experience. Thus, every adaptive optics system is desired to be tested in a closed loop on an optical test bench before its application to a telescope. In the close-loop test bench, we need an atmospheric simulator that simulates atmospheric disturbances, mostly in phase, in terms of spatial and temporal behavior. We report the development of an atmospheric turbulence simulator consisting of two point sources, a commercially available deformable mirror with a $12{\times}12$ actuator array, and two random phase plates. The simulator generates an atmospherically distorted single or binary star with varying stellar magnitudes and angular separations. We conduct a simulation of a binary star by optically combining two point sources mounted on independent precision stages. The light intensity of each source (an LED with a pin hole) is adjustable to the corresponding stellar magnitude, while its angular separation is precisely adjusted by moving the corresponding stage. First, the atmospheric phase disturbance at a single instance, i.e., a phase screen, is generated via a computer simulation based on the thin-layer Kolmogorov atmospheric model and its temporal evolution is predicted based on the frozen flow hypothesis. The deformable mirror is then continuously best-fitted to the time-sequenced phase screens based on the least square method. Similarly, we also implement another simulation by rotating two random phase plates which were manufactured to have atmospheric-disturbance-like residual aberrations. This later method is limited in its ability to simulate atmospheric disturbances, but it is easy and inexpensive to implement. With these two methods, individually or in unison, we can simulate typical atmospheric disturbances observed at the Bohyun Observatory in South Korea, which corresponds to an area from 7 to 15 cm with regard to the Fried parameter at a telescope pupil plane of 500 nm.

A Study on the Use of Grid-based Spatial Information for Response to Typhoons (태풍대응을 위한 격자 기반 공간정보 활용방안 연구)

  • Hwang, Byungju;Lee, Junwoo;Kim, Dongeun;Kim, Jangwook
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.25-38
    • /
    • 2021
  • Purpose: To reduce the damage caused by continuously occurring typhoons, we proposed a standardized grid so that it could be actively utilized in the prevention and preparation stage of typhoon response. We established grid-based convergence information on the typhoon risk area so that we showed the effectiveness of information used in disaster response. Method: To generate convergent information on typhoon hazard areas that can be useful in responding to typhoon situation, we used various types of data such as vector and raster to establish typhoon hazard area small grid-based information. A standardized grid model was applied for compatibility with already produced information and for compatibility of grid information generated by each local government. Result: By applying the grid system of National branch license plates, a grid of typhoon risk areas in Seoul was constructed that can be usefully used when responding to typhoon situations. The grid system of National branch license plates defines the grid size of a multi-dimensional hierarchical structure. And a grid of typhoon risk areas in Seoul was constructed using grids of 100m and 1,000m. Conclusion: Using real-time 5km resolution grid based weather information provided by Korea Meteorological Administration, in the future, it is possible to derive near-future typhoon hazard areas according to typhoon travel route prediction. In addition, the national branch number grid system can be expanded to global grid systems for global response to various disasters.

Improvement of Multiple-sensor based Frost Observation System (MFOS v2) (다중센서 기반 서리관측 시스템의 개선: MFOS v2)

  • Suhyun Kim;Seung-Jae Lee;Kyu Rang Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.226-235
    • /
    • 2023
  • This study aimed to supplement the shortcomings of the Multiple-sensor-based Frost Observation System (MFOS). The developed frost observation system is an improvement of the existing system. Based on the leaf wetness sensor (LWS), it not only detects frost but also functions to predict surface temperature, which is a major factor in frost occurrence. With the existing observation system, 1) it is difficult to observe ice (frost) formation on the surface when capturing an image of the LWS with an RGB camera because the surface of the sensor reflects most visible light, 2) images captured using the RGB camera before and after sunrise are dark, and 3) the thermal infrared camera only shows the relative high and low temperature. To identify the ice (frost) generated on the surface of the LWS, a LWS that was painted black and three sheets of glass at the same height to be used as an auxiliary tool to check the occurrence of ice (frost) were installed. For RGB camera shooting before and after sunrise, synchronous LED lighting was installed so the power turns on/off according to the camera shooting time. The existing thermal infrared camera, which could only assess the relative temperature (high or low), was improved to extract the temperature value per pixel, and a comparison with the surface temperature sensor installed by the National Institute of Meteorological Sciences (NIMS) was performed to verify its accuracy. As a result of installing and operating the MFOS v2, which reflects these improvements, the accuracy and efficiency of automatic frost observation were demonstrated to be improved, and the usefulness of the data as input data for the frost prediction model was enhanced.

Fast Mode Decision using Block Size Activity for H.264/AVC (블록 크기 활동도를 이용한 H.264/AVC 부호화 고속 모드 결정)

  • Jung, Bong-Soo;Jeon, Byeung-Woo;Choi, Kwang-Pyo;Oh, Yun-Je
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.1-11
    • /
    • 2007
  • H.264/AVC uses variable block sizes to achieve significant coding gain. It has 7 different coding modes having different motion compensation block sizes in Inter slice, and 2 different intra prediction modes in Intra slice. This fine-tuned new coding feature has achieved far more significant coding gain compared with previous video coding standards. However, extremely high computational complexity is required when rate-distortion optimization (RDO) algorithm is used. This computational complexity is a major problem in implementing real-time H.264/AVC encoder on computationally constrained devices. Therefore, there is a clear need for complexity reduction algorithm of H.264/AVC such as fast mode decision. In this paper, we propose a fast mode decision with early $P8\times8$ mode rejection based on block size activity using large block history map (LBHM). Simulation results show that without any meaningful degradation, the proposed method reduces whole encoding time on average by 53%. Also the hybrid usage of the proposed method and the early SKIP mode decision in H.264/AVC reference model reduces whole encoding time by 63% on average.

An Active Queue Management Method Based on the Input Traffic Rate Prediction for Internet Congestion Avoidance (인터넷 혼잡 예방을 위한 입력율 예측 기반 동적 큐 관리 기법)

  • Park, Jae-Sung;Yoon, Hyun-Goo
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.41-48
    • /
    • 2006
  • In this paper, we propose a new active queue management (AQM) scheme by utilizing the predictability of the Internet traffic. The proposed scheme predicts future traffic input rate by using the auto-regressive (AR) time series model and determines the future congestion level by comparing the predicted input rate with the service rate. If the congestion is expected, the packet drop probability is dynamically adjusted to avoid the anticipated congestion level. Unlike the previous AQM schemes which use the queue length variation as the congestion measure, the proposed scheme uses the variation of the traffic input rate as the congestion measure. By predicting the network congestion level, the proposed scheme can adapt more rapidly to the changing network condition and stabilize the average queue length and its variation even if the traffic input level varies widely. Through ns-2 simulation study in varying network environments, we compare the performance among RED, Adaptive RED (ARED), REM, Predicted AQM (PAQM) and the proposed scheme in terms of average queue length and packet drop rate, and show that the proposed scheme is more adaptive to the varying network conditions and has shorter response time.

Estimation Method of Predicted Time Series Data Based on Absolute Maximum Value (최대 절대값 기반 시계열 데이터 예측 모델 평가 기법)

  • Shin, Ki-Hoon;Kim, Chul;Nam, Sang-Hun;Park, Sung-Jae;Yoo, Sung-Soo
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.103-110
    • /
    • 2018
  • In this paper, we introduce evaluation method of time series prediction model with new approach of Mean Absolute Percentage Error(hereafter MAPE) and Symmetric Mean Absolute Percentage Error(hereafter sMAPE). There are some problems using MAPE and sMAPE. First MAPE can't evaluate Zero observation of dataset. Moreover, when the observed value is very close to zero it evaluate heavier than other methods. Finally it evaluate different measure even same error between observations and predicted values. And sMAPE does different evaluations are made depending on whether the same error value is over-predicted or under-predicted. And it has different measurement according to the each sign, even if error is the same distance. These problems were solved by Maximum Mean Absolute Percentage Error(hereafter mMAPE). we used the absolute maximum of observed value as denominator instead of the observed value in MAPE, when the value is less than 1, removed denominator then solved the problem that the zero value is not defined. and were able to prevent heavier measurement problem. Also, if the absolute maximum of observed value is greater than 1, the evaluation values of mMAPE were compared with those of the other evaluations. With Beijing PM2.5 temperature data and our simulation data, we compared the evaluation values of mMAPE with other evaluations. And we proved that mMAPE can solve the problems that we mentioned.

An Empirical Model for Forecasting Alternaria Leaf Spot in Apple (사과 점무늬낙엽병(斑點落葉病)예찰을 위한 한 경험적 모델)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.4 s.69
    • /
    • pp.221-228
    • /
    • 1986
  • An empirical model to predict initial disease occurrence and subsequent progress of Alternaria leaf spot was constructed based on the modified degree day temperature and frequency of rainfall in three years field experiments. Climatic factors were analized 10-day bases, beginning April 20 to the end of August, and were used as variables for model construction. Cumulative degree portion (CDP) that is over $10^{\circ}C$ in the daily average temperature was used as a parameter to determine the relationship between temperature and initial disease occurrence. Around one hundred and sixty of CDP was needed to initiate disease incidence. This value was considered as temperature threshhold. After reaching 160 CDP, time of initial occurrence was determined by frequency of rainfall. At least four times of rainfall were necessary to be accumulated for initial occurrence of the disease after passing temperature threshhold. Disease progress after initial incidence generally followed the pattern of frequency of rainfall accumulated in those periods. Apparent infection rate (r) in the general differential equation dx/dt=xr(1-x) for individual epidemics when x is disease proportion and t is time, was a linear function of accumulation rate of rainfall frequency (Rc) and was able to be directly estimated based on the equation r=1.06Rc-0.11($R^2=0.993$). Disease severity (x) after t time could be predicted using exponential equation $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$ derived from the differential equation, when $x_0$ is initial disease, $b_0\;and\;b_1$ are constants. There was a significant linear relationship between disease progress and cumulative number of air-borne conidia of Alternaria mali. When the cumulative number of air-borne conidia was used as an independent variable to predict disease severity, accuracy of prediction was poor with $R^2=0.3328$.

  • PDF

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.