• Title/Summary/Keyword: tillage

Search Result 415, Processing Time 0.025 seconds

Effects of Tillage on Organic Matters and Microbial Communities in Organically Cultivated Corn Field Soils (유기농 옥수수밭에서 경운이 토양 유기물 함량 및 미생물군집에 미치는 영향)

  • Ahn, Dalrae;An, Nan-Hee;Kim, Da-Hye;Han, Byeong-Hak;You, Jaehong;Park, InCheol;Ahn, Jae-Hyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.65-74
    • /
    • 2020
  • BACKGROUND: Soil carbon sequestration has been investigated for a long time because of its potential to mitigate the greenhouse effect. No- or reduced tillage, crop rotations, or cover crops have been investigated and practiced to sequester carbon in soils but the roles of soil biota, particularly microorganisms, have been mostly ignored although they affect the amount and stability of soil organic matters. METHODS AND RESULTS: In this study we analyzed the organic matter and microbial community in organically cultivated corn field soils where no-tillage (NT) or conventional tillage (CT) had been practiced for about three years. The amounts of organic matter and recalcitrant carbon pool were 18.3 g/kg dry soil and 4.1 g C/kg dry soil, respectively in NT soils, while they were 12.4 and 2.5, respectively in CT soils. The amounts of RNA and DNA, and the copy numbers of bacterial 16S rRNA genes and fungal ITS sequences were higher in NT soils than in CT soils. No-tillage treatment increased the diversities of soil bacterial and fungal communities and clearly shifted the bacterial and fungal community structures. In NT soils the relative abundances of bacterial phyla known as copiotrophs, Betaproteobacteria and Bacteroidetes, increased while those known as oligotrophs, Acidobacteria and Verrucomicrobia, decreased compared to CT soils. The relative abundance of a fungal phylum, Glomeromycota, whose members are known as arbuscular mycorrhizal fungi, was about two time higher in NT soils than in CT soils, suggesting that the higher amount of organic matter in NT soils is related to its abundance. CONCLUSION: This study shows that no-tillage treatment greatly affects soil microbial abundance and community structure, which may affect the amount and stability of soil organic matter.

Improvement of Growth and Soil Environment by Topdressing and Tillage in Zoysiagrass (Zoysia japonica) Cultivation Field (잔디 재배지에서 배토와 경운처리에 의한 잔디생육 및 토양환경 개선)

  • Han, Jeong-Ji;Choi, Su-Min;Lee, Kwang-Soo;Park, Yong-Bae;Bae, Eun-Ji
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.165-169
    • /
    • 2016
  • To establish the soil management system for the efficient sod production, survey on the growth of zoysiagrass by different soil managements was conducted in repeated cultivation field with regard to soil physical properties. Soils were subjected to four types of management methods, which include (1) rolling (2) topdressing (3) topdressing + rolling (4) topdressing + tillage + rolling. The topdressing + tillage + rolling treatment significantly ameliorated soil physical properties such as bulk density, porosity and solid phase as compared to rolling and topdressing + rolling treatments, and was not significantly different from the topdressing treatment. Further growth and density of zoysiagrass except for the root dry weight in topdressing + tillage + rolling treatment were significantly higher than that only in rolling treatment. Topdressing + tillage + rolling treatment significantly increased the number of shoot as compared to the other treatments. Therefore, combined topdressing and tillage soil management practice should be conducted for the production of zoysiagrass in repeated cultivation field.

Analysis of Equivalent Torque of 78 kW Agricultural Tractor during Rotary Tillage (78 kW급 농업용 트랙터의 로타리 경운 작업에 따른 등가 토크 분석)

  • Baek, Seung-Min;Kim, Wan-Soo;Park, Seong-Un;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.359-365
    • /
    • 2019
  • This paper is a basic study for the performance evaluation, durability improvement and optimal design of tractor transmission. The engine torque of the 78 kW agricultural tractor during rotary tillage was measured using CAN communication. It was calculated with equivalent torque and then analyzed. In order to develop a reliable tractor, it is important to convert measured torque in various agricultural operations into equivalent torque and analyze it. The equivalent torque was calculated using Palmgren-Miner's rule, which is a representative cumulative damage law. The equivalent torque of rotary tillage period and steering period are 229.2 and 136.7 Nm, respectively. The maximum and average torque during rotary tillage period are 336.0 and 234.4 Nm, respectively. The maximum and average torque of the steering period are 288.0 and 134.6 Nm, respectively. The engine torque in rotary tillage period is higher than in the steering period because of cultivation of soil through PTO. The maximum and rated torque of engine are 387.0 and 323.0 Nm, respectively, which are 183% and 136% higher than the equivalent torque during rotary tillage and of steering section. Because transmission of agricultural tractor in Korea companies is generally designed by the rated torque of engine, there is a difference from measured torque during agricultural operations. Therefore, it is necessary to consider it for optimal design.

Effect Analysis of Tillage Depth on Rotavator Shaft Load Using the Discrete Element Method (이산요소법을 활용한 경심이 로타리 작업기의 경운날 축 부하에 미치는 영향 분석)

  • Bo Min Bae;Dae Wi Jung;Dong Hyung Ryu;Jang Hyeon An;Se O Choi;Yeon Soo Kim;Sang Dae Lee;Seung Je Cho
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.115-122
    • /
    • 2023
  • This study utilized a discrete element method (DEM) simulation, as one of the virtual field trials, to predict the impact of tillage depth on the rotary blade shaft during rotavator tilling. The virtual field for the simulation was generated according to soil properties observed in an actual field. Following the generation of particles for the virtual field, a sequence of calibration steps followed to align the mechanical properties more closely with those of real soil. Calibration was conducted with a focus on bulk density and shear torque, resulting in calibration errors of just 0.02% for bulk density and 0.52% for shear torque. The prediction of the load on a rotary tiller's blade shaft involved a three-pronged approach, considering shaft torque, draft force, and vertical force. In terms of shaft torque, the values exhibited significant increases of 42.34% and 36.91% for every 5-centimeter increment in tillage depth. Similarly, the vertical force saw substantial growth by 40.41% and 36.08% for every 5-centimeter increment. In contrast, the variation in draft force based on tillage depth was comparatively lower at 18.49% and 0.96%, indicating that the effect of tillage depth on draft force was less pronounced than its impact on shaft torque and vertical force. From a perspective of agricultural machinery research, this study provides valuable insights into the DEM soil modeling process, accounting for changes in soil properties with varying tillage depths. These findings are expected to be instrumental in future agricultural machinery design studies.

Development of recognition system of field shape and tillage characteristics for autonomous tractor (자율 주행 트랙터를 위한 포장형상 및 경운작업특성 인식시스템 개발)

  • Seo, Il-Hwan;Seo, Dong-Hyun;Kim, Man-Soo;Chung, Sun-Ok;Kim, Ki-Dae
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.343-347
    • /
    • 2011
  • Precise traveling and tillage operation using an autonomous tractor is difficult with the data from the Geographic Information System(GIS) because it does not include the data of the width and inclination of the field to work. The minimum turing radius of the tractor could be different from the value presented by the tractor maker due to the moisture content of the field soil or operators' skill. Two programs were developed to process data obtained with the tillage path measuring system: one for recognizing coordinates of the 4 field corners, and the other for recognizing the minimum turning radius of the tractor.

Cultural Management to Control Weedy Rice in Paddy Field

  • Kim, Sang-Yeol;Son, Yang;Park, Sung-Tae;Kim, Ho-Yeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.4
    • /
    • pp.232-236
    • /
    • 2000
  • To obtain a basic information on the development of effective control strategies for weedy rice in direct seeding rice cultivation, occurrence patterns of weedy rice as influenced by different cultural practices such as cultivation method, water management, seeding time, and tillage were investigated in field or pot experiments. High occurrence of weedy rice was observed in a continuous direct seeding paddy field as compared to machine transplanted one. Based on the percent of weedy rice panicle over three years trial, high ridged dry seeding was highest with 36.9%, followed by wet seeding with 30.9%, water seeding with 14.6% and machine transplanting rice with 0.8%, indicating 97.8% reduction in weedy rice occurrence by machine transplanting rice as compared with high ridged dry seeding. Germination of weedy rice was promoted to 83-94 % when rice panicle was flooded from September 30 to October 10 for 6 days and 74-88% for 9 days on October 20. Weedy rice occurrence was also substantially reduced by delayed seeding on June 10 and intensive tillage. The results suggest that machine transplanting rice be more effective cultural practice than flooding treatment, delayed seeding and intensive tillage when weedy rice problem occurs in direct seeded paddy field.

  • PDF

Development of a Contact Type Height Sensor to Measure Ground Clearance of an Agricultural Tractor (농용 트랙터용 접촉식 지상고 측정 센서 개발)

  • Lee, Choong-Ho;Lee, Je-Yong;Lee, Sang-Sik
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • The tillage depth control system is one of the most salient control system of tractor implements. A contact-type height sensor was developed to measure ground clearance for the tillage depth control. The height sensor was fabricated in this study, and its efficacy in a tillage depth control system was evaluated. Experiments were conducted in order to determine both static and dynamic detection characteristics of the height sensor using soil bin system on the sampled soil (sandy loam, sand, clay loam). The results of the static detection characteristics showed that in the case, sandy loam soil despite and clay loam soil at a wet basis moisture content of 30%, large measurement errors were observed a due to penetration of a plastic puck into the sampled soil. The results of the dynamic detection characteristics showed that the height sensor detected the distance from the ground of sandy loam soil despite the uneven nature of the ground surface and the changes in traveling speed $1km/h{\sim}5km/h$ at a wet basis moisture content of 10%.

Effects of Rye Harvest Date and Residue Management on Growth and Yield of Corn for Silage (호밀의 수확시기 및 잔주의 처리방법이 사일리지용 옥수수의 생장과 수량에 미치는 영향)

  • 김원호;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 1997
  • This experiment was conducted at the forage experimental field, College of Agriculture and Life Sciences, Seoul National University, Suweon in 1992 and 1993 to investigate the effects of tillage method-conventional and rotary-till, rye (Secde cereale L.) harvest date-early (April 14) and late (April 26), and rye residue treatmentno paraquat(1, 1-dinethyl-4,4'-bipyridinium dichloride) and paraquat in minimizing the adverse effects of the rye residue on growth and yield of succeeding corn(Zea mays L.). Corn plant height during the growing season was slighly taller with conventional tillage relative to rotary-till when rye was harvested in early and treated by paraquat. Corn LA1 during the growing season was slighly increased when rye was harvested in early and where conventional tillage was used with paraquat treatment. There were no differences in the leaf number and silking dates of corn among the tillage methods, harvest dates of rye and paraquat treatments. The dry matter yield of corn was significantly increased by paraquat treatment when rye was harvest in early, but no differences were found in the dry matter percentage, ear percent to total dry matter, and stover, ear and estimated TDN yields of corn among the treatments.

  • PDF

Prediction of tillage Workability by Cone Index (원추지수를 이용한 경운 정지 작업의 작업성 예측)

  • 최석원;오영근;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2000
  • This study was conducted to recognize a possibility that cone index can be used as a means of evaluating the tillage workability. Cone indexes were measured every 24 hours after rainfall at the experimental plots, and the rotary and plowing operations were conducted at the same time. The workability was evaluated on a basis of three categories of good, fair and poor depending on the quality of the performed works. Although the workability was affected by many factors such as soil type, moisture content ground slope and weather condition, the duration and amount of rainfall were of most influence. Results of the study showed that a good workability was resulted from the cone indexes greater than an average of 552 kPa for rotary operations and 671 kPa for plowing operations. Fair work was obtained with cone indexes greater than an average of 331 kPa for rotary operations and 459 kPa for plowing operations. The cone indexes less than an average of 171 kPa and 149 kPa resulted in poor workabilities for rotary and plowing operations, respectively. The experimental results may provide a general guideline for evaluating the tillage workability by cone index.

  • PDF

Study on the Development of High-speed Rotary Tilling System for Power Tiller (경운기의 고속 로터리 경운시스템 개발에 관한 연구)

  • 이승규;김성태;우종구;김재영
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.423-430
    • /
    • 2001
  • The purpose of this study is to develop high-speed rotary tillage system for a power tiller by improving the rotary blade and the power train of transmission. Mechanical structure of gear train of rotary drive of conventional power tiller was simplified so that power can be transmitted directly from second shaft to tilling speed change shaft by rotating freely the transfer gear which changes the direction of rotation of shafts using needle bearing installed into middle shaft. A new gear train suitable for the single-edged rotary blade and high-speed rotary drive was developed with the rotational speed of rotary shaft faster than 7.5% at 1st-speed and 1.4% at 2nd-speed the one of conventional system by changing the numbers of teeth of gears of middle shaft, tilling speed change shaft and PTO shaft. Using the developed gear train for high-speed rotary drive, field tests were performed to compare tillage performances by the developed single-edged blade and by the conventional double-edged blade. The results showed that the performances by the single-edged blade compared with the one by the double-edged blade was improved about 18% in field capacity, about 34% in fuel consumption, and 9.4% in soil crushing ratio. Therefore, it may be concluded that tillage performance by the single-edged blade was improved compared to the one by the conventional blade. Evaluation of the developed system consisting of single-edged blade and gear train for high-speed rotary drive in field revealed that tillage performance of the developed system was similar to the one of field test conducted using the system consisting of single-edged blade and gear train for rotary drive of conventional power tiller However, considering the higher cone index of the upland field where evaluation was carried out compare to the one of the ordinary paddy field, it may be concluded that tillage performance of the developed rotary tilling system better than the one of conventional system.

  • PDF