• Title/Summary/Keyword: tight regulation

Search Result 88, Processing Time 0.022 seconds

Posttranscriptional and posttranslational determinants of cyclooxygenase expression

  • Mbonye, Uri R.;Song, In-Seok
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.552-560
    • /
    • 2009
  • Cyclooxygenases (COX-1 and COX-2) are ER-resident proteins that catalyze the committed step in prostanoid synthesis. COX-1 is constitutively expressed in many mammalian cells, whereas COX-2 is usually expressed inducibly and transiently. Abnormal expression of COX-2 has been implicated in the pathogenesis of chronic inflammation and various cancers; therefore, it is subject to tight and complex regulation. Differences in regulation of the COX enzymes at the posttranscriptional and posttranslational levels also contribute significantly to their distinct patterns of expression. Rapid degradation of COX-2 mRNA has been attributed to AU-rich elements (AREs) at its 3’UTR. Recently, microRNAs that can selectively repress COX-2 protein synthesis have been identified. The mature forms of these COX proteins are very similar in structure except that COX-2 has a unique 19-amino acid (19-aa) segment located near the C-terminus. This C-terminal 19-aa cassette plays an important role in mediation of the entry of COX-2 into the ER-associated degradation (ERAD) system, which transports ER proteins to the cytoplasm for degradation by the 26S proteasome. A second pathway for COX-2 protein degradation is initiated after the enzyme undergoes suicide inactivation following cyclooxygenase catalysis. Here, we discuss these molecular determinants of COX-2 expression in detail.

Dyslipidemia promotes germinal center reactions via IL-27

  • Ryu, Heeju;Chung, Yeonseok
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.371-372
    • /
    • 2018
  • Cardiovascular disease such as atherosclerosis is caused by imbalanced lipid metabolism and represents a leading cause of death worldwide. Epidemiological studies show that patients with systemic autoimmune diseases exhibit a higher incidence of atherosclerosis. Conversely, hyperlipidemia has been known to accelerate the incidence of autoimmune diseases in humans and in animal models. However, there is a considerable gap in our understanding of how atherosclerosis impacts the development of the autoimmunity in humans, and vice versa. The atherosclerosis-related autoimmune diseases include psoriasis, rheumatoid arthritis, systemic lupus erythematosus (SLE) and diabetes mellitus. By using animal models of atherosclerosis and SLE, we have recently demonstrated that hyperlipidemia significantly accelerates the development of autoantibodies, by inducing autoimmune follicular helper T ($T_{FH}$) cells. Mechanistic studies have identified that hyperlipidemia induces IL-27 production in a TLR4-dependent manner, likely via downregulating LXR expression in dendritic cells. In this case, mice lacking IL-27 do not develop enhanced antibody responses. Thus it is noted that these findings propose a mechanistic insight responsible for the tight association between cardiovascular diseases and SLE in humans.

The Alcohol-inducible form of Cytochrome P450 (CYP 2E1): Role In Toxicology and Regulation of Expression

  • Novak, Raymond F.;Woodcroft, Kimberley J.
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.267-282
    • /
    • 2000
  • Cytochrome P45O (CYP) 2E1 catalyzes the metabolism of a wide variety of therapeutic agents, procarcinogens, and low molecular weight solvents. CYP2E1-catalyzed metabolism may cause toxicity or DNA damage through the production of toxic metabolites, oxygen radicals, and lipid peroxidation. CYP2E1 also plays a role in the metabolism of endogenous compounds including fatty acids and ketone bodies. The regulation of CYP2E1 expression is complex, and involves transcriptional, post-transcriptional, translational, and post-translational mechanisms. CYP2E1 is transcriptionally activated in the first few hours after birth. Xenobiotic inducers elevate CYP2E1 protein levels through both increased translational efficiency and stabilization of the protein from degradation, which appears to occur primarily through ubiquitination and proteasomal degradation. CYP2E1 mRNA and protein levels are altered in response to pathophysiologic conditions by hormones including insulin, glucagon, growth hormone, and leptin, and growth factors including epidermal growth factor and hepatocyte growth factor, providing evidence that CYP2E1 expression is under tight homeostatic control.

  • PDF

New CCM Single Stage PFC Full Bridge Converter (새로운 CCM 단일 전력단 역률보상 풀 브리지 컨버터)

  • Lim, Chang-Seob;Kwon, Soon-Kurl;Cho, Jung-Goo;Song, Doo-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.986-989
    • /
    • 2002
  • This paper proposes a new single stage power factor correction (PFC) full bridge converter which operates at continuous conduction mode(CCM). The proposed single stage PFC consists of typical zero voltage switching(ZVS) full bridge DC/DC converter, two transformer auxiliary windings, and two small inductors, and two diodes. Neither additional active switch nor any control circuit are added for PFC resulting in very low cost. The proposed converter provides input power factor correction with CCM control and tight output voltage regulation. All switching devices are operated under ZVS with minimum voltage stress. Operation principle and analysis are explained and verified with computer simulation and experimental results on a 1.2kW, 100kHz prototype.

  • PDF

Multiple Output Charger based on the Novel Time Division Multiple Control Technique (새로운 시분할 다중 제어 기법에 기반한 다중 출력 충전기)

  • Tran, Van-Long;Choi, Woo-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.13-14
    • /
    • 2013
  • Multiple output converters (MOCs) are widely used for applications which require various kinds of the output voltages due to its advantages in cost, volume, and efficiency. However, most of the MOCs developed so far can regulate only one output tightly and require as many secondary windings in the transformer as the number of the outputs. In this paper, a novel Time Division Multiple Control (TDMC) method to regulate all the outputs in high precision is proposed and applied to the double ended forward converter for the multiple battery charger. Additional benefit of the proposed topology is to require only one secondary winding in the transformer for all the outputs. The proposed converter can charge two different kinds of batteries or same kind of batteries in different state of charges (SOCs) by CC/CV mode independently with the even degree of tight regulation, thereby satisfying the ripple requirements for each battery.

  • PDF

New Group of Magnetic Coupled Power Factor Correction Converter with Single-Stage and Single-Switch (새로운 단일전력단 및 단일스위치 방식의 자기결합형 역률개선 컨버터 그룹)

  • Moon, Gun-Woo;Choo, Jin-Boo;Roh, Chung-Wook;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2240-2242
    • /
    • 1997
  • A new group of magnetic coupled high power factor converter with a single-switch /single-stage is proposed. The proposed converter gives the good power factor correction, low current harmonic distortions, and tight output voltage regulation. The prototype shows the IEC555-2 requirements are met satisfactorily with nearly unity power factor.

  • PDF

Novel Reset Winding Clamped Forward Converter with Transformer Voltage Feedback Technique for Power Factor Correction (변압기 전압 되먹임방식을 이용한 고역률의 리셋권선을 갖는 새로운 포워드 컨버터)

  • Moon, Gun-Woo;Roh, Chung-Wook;Jung, Young-Seok;Lee, Jun-Young;Youn, Myung-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.348-350
    • /
    • 1996
  • A new reset winding clamped forward converter with transformer voltage feedback technique for power factor correction with a single-switch/single-stage is proposed. The proposed converter gives the good power factor correction, low current harmonic distortions, and tight output voltage regulation. The prototype shows the IEC555-2 requirements are met satisfactorily with nearly unity power factor.

  • PDF

Analysis and Implementation of Single-Stage AC/DC Converter with Magnetic Energy Feedback Technique for Power Factor Correction (역률개선을 위한 자기에너지 궤환기법의 단일전력단 AC/DC 컨버터의 해석 및 구현)

  • 문건우;오관일;전영수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.148-155
    • /
    • 1998
  • A novel single-switch, single-stage, AC/DC forward converter with transformer magnetic energy feedback technique for power factor correction is proposed. The operational principle and analysis of the proposed converter is presented. The proposed converter gives the good power factor correction, low line current harmonic distortions, and tight output voltage regulation. The prototype shows the IEC 555-2 requirements are met satisfactorily with nearly unity power factor.

Network of hypothalamic neurons that control appetite

  • Sohn, Jong-Woo
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233]

In vivo action of RNA G-quadruplex in phloem development

  • Cho, Hyunwoo;Cho, Hyun Seob;Hwang, Ildoo
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.547-548
    • /
    • 2018
  • Phloem network integrates cellular energy status into post-embryonic growth, and development by tight regulation of carbon allocation. Phloem development involves complicated coordination of cell fate determination, cell division, and terminal differentiation into sieve elements (SEs), functional conduit. All of these processes must be tightly coordinated, for optimization of systemic connection between source supplies and sink demands throughout plant life cycle, that has substantial impact on crop productivity. Despite its pivotal role, surprisingly, regulatory mechanisms underlying phloem development have just begun to be explored, and we recently identified a novel translational regulatory network involving RNA G-quadruplex and a zinc-finger protein, JULGI, for phloem development. From this perspective, we further discuss the role of RNA G-quadruplex on post-transcriptional control of phloem regulators, as a potential interface integrating spatial information for asymmetric cell division, and phloem development.