• Title/Summary/Keyword: tie reinforcement

Search Result 121, Processing Time 0.024 seconds

An Analytical Study on Confinement Effect of Transverse Reinforcement and Cross-Tie in Hollow Rectangular Sectional Columns (중공사각단면 기둥에 있어서 횡철근과 Cross-tie의 횡방향 구속 효과에 대한 해석적 연구)

  • 김익현;정영식;신원철;선창호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.617-620
    • /
    • 2003
  • This paper presents the confinement effect of transverse reinforcement and cross-tie in hollow rectangular sectional columns. 20 analytical models with different amounts of transverse reinforcement and cross-tie in a plastic hinge region were analyzed by 3D nonlinear FEM. The analytical results show that the higher ductility can be achieved by the resonable combination of transverse re-bar and cross-tie providing sufficient lateral confinement.

  • PDF

Confinement Effects of Reinforced Concrete Tied Columns (철근콘크리트 띠철근 기둥의 구속효과)

  • 왕성근;한범석;이희수;신성우;반병열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-34
    • /
    • 2001
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$120mm) were fabricated to simulate similarly an actual structural members size. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were studied in this research program.

  • PDF

Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach

  • Ozkal, Fatih Mehmet;Uysal, Habib
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.589-597
    • /
    • 2017
  • Strut-and-tie modeling method, which evolved on truss-model approach, has generally been preferred for the design of complex reinforced concrete structures and structural elements that have critical shear behavior. Some structural members having disturbed regions require exceptional detailing for all support and loading conditions, such as the beam-column connections, deep beams, short columns or corbels. Considering the general expectation of exhibiting brittle behavior, corbels are somewhat dissimilar to other shear critical structures. In this study, reinforcement layout of a corbel model was determined by the participation of structural optimization and strut-and-tie modeling methods, and an experimental comparison was performed against a conventionally designed model.

Strength Prediction of Concrete Pile Caps Using 3-D Strut-Tie Models (3차원 스트럿-타이 모델을 이용한 파일캡의 강도예측)

  • 박정웅;윤영묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.380-383
    • /
    • 2003
  • Deep pile caps usually contain no transverse shear reinforcement and only small percentages of longitudinal reinforcement. The current design procedures including ACI 318-02 for the pile caps do not provide engineers with a clear understanding of the physical behavior of deep pile caps. In this study, the failure strengths of nine pile cap specimens tested to failure were evaluated using 3-dimensional strut-tie models. The analysis results obtained from the present study were compared with those obtained from several design methods, and the validity of the present method implementing 3-dimensional strut-tie models was examined.

  • PDF

Evaluation of Shear Strength of RC Beams using Strut-and-Tie Model (스트럿-타이 모델을 이용한 세장한 철근콘크리트 부재의 강도평가)

  • Park, Hong-Gun;Eom, Tae-Sung;Park, Chong-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.271-274
    • /
    • 2005
  • Existing strut-and-tie model cannot be applied to analysis of slender beams without shear reinforcement because shear transfer mechanism is not formed. In the present study, a new strut-and-tie model with rigid joint was developed. Basically, concrete strut is modeled as a frame element which can transfer shear force (or moment) as well as axial force. Employing Rankine failure criterion, failure strength due to shear-tension and shear-compression developed in compressive concrete strut was defined. For verification, various test specimens were analyzed and the results were compared with tests. The proposed strut-and-tie model predicted shear strength and failure displacement with reasonable precision, addressing the design parameters such as shear reinforcement, concrete compressive strength, and shear span ratio.

  • PDF

Automated nonlinear design of reinforced concrete D regions

  • Amini Najafian, Hamidreza;Vollum, Robert L.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.91-110
    • /
    • 2013
  • This paper proposes a novel iterative procedure for the design of planar reinforced concrete structures in which the reinforcement is designed for stresses calculated in a nonlinear finite element analysis. The procedure is intended as an alternative to strut and tie modeling for the design of complex structures like deep beams with openings. Practical reinforcement arrangements are achieved by grouping the reinforcement into user defined horizontal and vertical bands. Two alternative strategies are proposed for designing the reinforcement which are designated A and B. Design constraints are specified in terms of permissible stresses and strains in the reinforcement and strains in the concrete. A case study of a deep beam with an opening is presented to illustrate the method. Comparisons are made between design strategies A and B of which B is shown to be most efficient. The resulting reinforcement weights are also shown to compare favorably with those previously reported in the literature.

The Study on Field Performance Test of Multi Branch Type Tie(GOLRY TIE) (다지형 침목 현장 성능평가에 관한 연구)

  • Kim, Hae-Gon;Suh, Dong-Seok;Kim, Nam-Hong;Lee, Syeung-Youl
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.162-166
    • /
    • 2011
  • In railway, Tie supports rail and plays a role that distribute train load to the ballast. Also, Tie and ballast resist against external force and fix the track position. But, weakening resistance of ballast and tie cause vertical displacement of tie and track irregularity. For reinforcement of track stiffness and reduction of track irregularity, KORAIL has developed Multi Branch type tie(GLORY Tie) that reinforced resistance than general PCT and installed in order to test in the field. This study measured and analyzed lateral resistance of ballast, wheel load of rail, bending strain of rail foot, vertical displacement and vibration acceleration of tie in order to evaluate performance of Multi Branch type tie in the field. According to the results of test, Multi Branch tie is excellent than general tie about lateral resistance of ballast and vertical displacement of tie. And, gap of measurement value between Multi Branch type tie and general tie about wheel load of rail, bending strain of rail foot were very small.

  • PDF

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Analysis of reinforced concrete corbel beams using Strut and Tie models

  • Parol, Jafarali;Al-Qazweeni, Jamal;Salam, Safaa Abdul
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2018
  • Reinforced concrete corbel beams (span to depth ratio of a corbel is less than one) are designed with primary reinforcement bars to account for bending moment and with the secondary reinforcement placed parallel to the primary reinforcement (shear stirrups) to resist shear force. It is interesting to note that most of the available analytical procedures employ empirical formulas for the analysis of reinforced concrete corbels. In the present work, a generalized and a simple strut and tie models were employed for the analysis of reinforced corbel beams. The models were benchmarked against experimental results available in the literature. It was shown here that increase of shear stirrups increases the load carrying capacity of reinforced concrete corbel beams. The effect of horizontal load on the load carrying capacity of the corbel beams has also been examined in the present paper. It is observed from the strut and tie models that the resistance of the corbel beam subjected to combined horizontal and vertical load did not change with increase in shear stirrups if the failure of the corbel is limited by concrete crushing. In other words, the load carrying capacity was independent of the horizontal load when failure of the beam occurred due to concrete crushing.

Improvement of Constructability of Coping by Reduction of Reinforcement Amount (철근량 저감을 통한 코핑부 시공성 향상)

  • Park, Bong-Sik;Park, Sung-Hyun;Cho, Jae-Yeol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1577-1582
    • /
    • 2011
  • Recently rapid construction of bridge is a main interest in construction. A research on rapid construction of pier coping is urgently needed because pier, which is a bridge understructure, directly affect lane reduction and increase of social cost. Precast assembly method and pre-assembly method are the main subjects of rapid construction. But these researches have focused not on reduction of reinforcement amount, but on modifying production method of coping. Reinforcement amount of design specification is as much as that of coping under constructing. So different approach is needed for reduction of reinforcement amount. In this paper, design of pier coping using strut-tie model was proposed for reduction of reinforcement amount and improvement of constructability. Railway bridge pier coping under constructing was analyzed using a finite element method and designed using strut-tie model.

  • PDF