• Title/Summary/Keyword: tide and current observation

Search Result 55, Processing Time 0.022 seconds

Nutrient Variations in the Jindong Bay during Summer by Ecosystem Modeling (해양생태계모델에 의한 하계 진동만의 영양염변동)

  • 김동선;홍철훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.164-176
    • /
    • 2003
  • During summer, the DIN (dissolved inorganic nitrogen) and DIP (dissolved inorganic phosphate) observed in the Jindong Bay in the southern sea of Korea show much higher values in the inner area of the bay. In general, they have high values in the upper (0-1 m) and lower layers (8 m-bottom), but are relatively lower in the middle layer (1-8 m). These features in their distribution are examined using an ecosystem model with considering the wind, tidal current, horizontal gradient of water density and residual flow. The experiments were focused on how to influence nutrients associated with these conditions. In the experiment with tide-induced residual flow, the values of nutrients appeared lower than the observation, and were well corresponded to it when the effects of wind, tide-induced residual current and horizontal gradient of water density were additionally imposed. A statistical analysis identifies these results. This paper suggests that variation of nutrient in the Jindong Bay during summer should be seriously a(footed wind-driven current by the wind and density-driven current is induced by the horizontal gradient of water density as well as tidal current.

Saline Water Movement In The Estuary Of The Nakdong River (낙동강 하구의 염수운동)

  • Chang, Sun-duck;Ryu, Cheong-ro;Lee, Mun-ok;Lee, Jae Chul
    • 한국해양학회지
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 1981
  • Saline water movements in relation to tidal condition and river discharge in the estuary of the Nakdong River are discussed on the basis of the observation data. The difference of salinity between the surface and the bottom layer was 1∼3 at spring tide forming a vertically homogeneous estuary, while at neap tide, it ranges up to 7∼15 indicating a sharp salt wedge. The maximum salinity appeared approximately at an hour after the high water, that is, three hours after the landward velocity maximum, while the salinity maximum at around an hour after the low water, that is, three hours after the seaward velocity maximum. The density current speed at a section located 10km landward from the river mouth was observed approximately to be 45cm sec$\^$-1/ at 8m layer.The relations between the salinity at Gupo and the river discharge at Jindong are estimated by means of the least square method. The maximum length of the salt wedge is calculated approximately to be 22km at neap tide and 16km at spring tide, which is in accordance with the observed data. The salinity influence area is deduced to be 45km at spring tide and 35km at neap tide. The diffusion coefficient of salinity was estimated approximately to be 1.5 10$\^$8/$\textrm{cm}^2$ sec$\^$-1/ at Samrak and 8 10$\^$5/$\textrm{cm}^2$ sec$\^$-1/ at Gupo at neap tide, while it was 1.4 10$\^$7/$\textrm{cm}^2$ sec$\^$-1/ at Dongwon at spring tide.

  • PDF

The Change of Suspended Sediment Concentration in the Seomjin River Estuary during Fall and Winter Months (추계와 동계 섬진강하구 부유퇴적물농도 변화)

  • Lee, Byoung-Kwan;Lee, Su-Woong;Kim, Seok-Yun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.542-550
    • /
    • 2011
  • Changes of suspended sediment concentration in the Seomjin river estuary located in south sea of the Korea peninsula were investigated during the spring tide in autumn (i.e. 25 hours in October) 2000 and winter (i.e. 25 hours in February) 2001. The changes of temperature and salinity during the spring tide in October 2000 showed larger variations than the those in February 2001. During the spring tide in October 2000, currents at bottom layer were observed to be stronger than during the spring tide in February 2001, showing that both of the two periods had ebb currents-predominant tide asymmetries. The suspended sediment concentrations in October 2000 were larger than the those in February 2001. At the time of the maximum of tide currents or after about one hour of the maximum during the autumn months, the suspended sediment turbidity was observed to be maximum. Another observation station at Hadong upstream from the Seomjin river estuary showed about one hour delay in tide phase, Thereby, the suspended sediment concentration showed high turbidity after two hours at bottom and three hours at surface layer, in particular, in October 2000. This results can be explained by the facts that river discharge increased significantly after the summer rainy season, causing also increase of erosion processes by strong current velocity at bottom layer.

Acoustic Doppler Current Profiler Bottom Tracking Survey of Flow Structures around Geumo Archipelago in the Southern Waters of Korea (ADCP bottom tracking에 의한 금오열도 주변의 해수유동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.589-600
    • /
    • 2019
  • In order to investigate the flow structures around Geumo archipelago on Southern Waters of Korea, water movements were measured for 25 hours during spring tide in May and neap tide in September 2002 using ADCP (Acoustic Doppler Current Profiler) attached to a running boat. Dominant directions of ebb and flood current at spring tide are SE-NW, representing the average flow rate of approximately 40cm/s in the surface layer. However because of the topographical reason, the direction and speed of the flow in the narrow waterway sea area around the northwest of Gae Island were different. There was no notable baroclinic component of tidal flow at spring tide. This indicates that the sea area has been actively engaged in vertical mixing due to island wake or eddy due to narrow waterways, shallow water depth and rapid flow rate around archipelago. At neap tide, dominant directions of tidal flows are SSE-NNW and the average flow rate in the surface layer is about 85 percent of the spring tide. The duration and intensity of the flow direction are shorter and less dominant than the spring tide. It is expected that asymmetrical tidal mixing will occur due to vertical velocity shear and horizontal eddies. From daily mean tidal flows obtained from the ADCP observation, it was found that the northwest of Gae Island have flows in NW~NE, the west of Geumo Island have the average currents of up to 21 cm/s WSW~SSW and counterclockwise circulation or eddy currents are formed in the west of Sori Island.

The Response of Temperature and Velocity Fields to $M_2$ Tide in Deukryang Bay in the Southern Sea of Korea (득량만에서의 $M_2$조에 대한 수온장 및 유속장의 응답)

  • HONG Chul-hoon;CHOI Yong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.667-678
    • /
    • 1997
  • A primitive equation numerical model driven only by $M_2$ tide is used to examine role of tide in the temperature and velocity fields of Deukryang Bay. The numerical model reproduces several features of the observational temperature fields such that the isotherms tend to be parallel to the coast in the bay, and the colder water exists at the right hand side in the bay. The horizontal temperature and velocity fields in the model are dominantly influenced by bottom topography. The model also shows that the surface colder water in the bay is accompanied by strong-alongshore current during the flood tide. An investigation for baroclinicity in the bay by additional numerical experiment indicates that the baroclinirity in velocity field is very weak. The model, however, did not reproduce a stratification in the observation, implying that the model needs to add other semi-diurnal components such as $S_2,\;O_2\;or\;K_2$ tides to $M_2$ tide.

  • PDF

A fine grid two-dimensional $M_2$ tidal model of the East China Sea (동지나해의 세격자 2차원 $M_2$조석모형)

  • 최병호
    • Water for future
    • /
    • v.21 no.2
    • /
    • pp.183-192
    • /
    • 1988
  • The previous two-dimensional non-linear tidal model of the East China Sea(Choi, 1980) has been further refined to resolve the flow over the ocntinental shelf in more detail. The mesh resolution of the present finite-difference grid system used is 4 minutes latitude by 5 minutes longitude over the entire shelf. The developed fine grid two-dimensional model was utilized to reproduce the $M_2$ tide and $M_4$ tide for the East China Sea contnental shelf. There is general agreement between the model results and the current observation made in the Eastern Yellow Sea, which supports the calculated tidal regime over the shelf. Some preliminary results on maximum bottom stress and tidally-induced residual current were also examined and discussed.

  • PDF

A Study on the Rotary Tidal Current in the East China Sea (동지나해 어장의 회전 조류에 관하여)

  • 김진건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 1986
  • Even though it is well known that the tidal current in the East China Sea rotates clockwise, few report can be found about the precise pattern of it. To furnish some information available for the stow net fishermen, the author carried out the observation over 235 semidiurnal tidal cycle to investigate the pattern of the set and the rate of tidal current in the Korean fishing section 250 and 494, by reading the current meter and by tracing the corner reflectors with radar onboard the anchored obsen'ation vessel, from May 12, 1984 through February 27, 1986. The results obtained are as follows: 1. The mean semidiurnal tidal cycle was 12 h 20 m during spring tide, and 12 h 30 m during neap tide. 2. The mean interval from the calculated time of high water until the current began to set north was 2 h 30 m and 2 h 15 m in the fishing section 250 and 494 respectively, and the mean interval from the time of low water current began to set south was about 2 h 0 m in both sections. 3. In comparison of the occupied times to vary the set from one of 8 principal bearing points to the neighboring one, the shortest was while the set varied from N to NE and S to SW in the section 250 and 494 respectively. Contrary the longest was while the set varied from SE to S and from W to NW in the section 250 and 494 respectively. 4. In comparison of the rate while the set varied from one of 8 principal bearing points to the neighboring one, the fastest was while the set varied from SE to Sand NW to N in the section 250, and E to SE and W to NW in the section 494. Contrary the slowest was while the current set to NE and S W in the section 250, and N, NE and S W in the section 494.

  • PDF

Tidal Exchange of Sea Water in Koje Bay (거제만의 해수교환)

  • KIM Jong-Hwa;CHANG Sun-Duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 1985
  • The sea water exchange of Koje Bay in the southeastern part of the Korean Peninsula was estimated on the basis of current measurements and oceanographic observation. The exchange ratio was estimated by salinity differences and tidal prism method. The range of exchange ratio at the central part at the entrance of the bay is estimated to be around $26\%$ at spring tide and 5 to $15\%$ at neap tide. The magnitude of exchange ratio, however, can be changed due to water exchange, hydrometeorological and geomorphological conditions. The flushing time deduced by tidal prism was about 48 hours at spring tide and 81 hours at neap tide. Tidal induced eddy motion may play an important role on the seawater exchange in the bay.

  • PDF

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

The Relation of Cross-sectional Residual Current and Stratification during Spring and Neap Tidal Cycle at Seokmo Channel, Han River Estuary Located at South Korea (대.소조기시 한강하구 석모수로에서 단면 잔차류와 성층간의 관계 연구)

  • Choi, Nak-Yong;Yoon, Byung-Il;Kim, Jong-Wook;Song, Jin-Il;Lim, Eun-Pyo;Woo, Seung-Bhum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.149-158
    • /
    • 2012
  • This study analyzed cross-sectional variations in residual current and strengths of stratification by observing cross-sectional velocity and salinity during spring tide and neap tide, respectively, for continuous 13-hour periods at 2 observation lines at northern and southern end of Seokmo Channel, which is located west of Ganghwado. Salinity distribution of channel depends on not only neap and spring tide but also impact of salinity. The residual current component was obtained by removing $M_2$ and $M_4$ tidal components that were extracted using the least squares method on 13-hour velocity component. Cross-section of residual velocity at northern and southern end of Seokmo Channel exhibited southward residual components at channel's surface layer, but northward residual current was observed at channel's bottom layer, clearly showing a 2-layer tidal circulation between surface and bottom layers. The variation in location of appearing northward residual current according to changes in spring and neap tidal cycle and its correlation with stratification were analyzed using the Richardson number and Simpsonhunter index. At northern and southern end of Seokmo Channel, northward residual current appears in the location where Richardson number is large, Simpson-hunter index appears as a value greater than 4.