• Title/Summary/Keyword: tidal power generation

Search Result 100, Processing Time 0.024 seconds

The Development of 10 kW Class Tidal Power Generator System - Focusing on Field Experiments with Pipelines (10 kW급 조력발전장치 개발 - 관수로 현장실험을 중심으로)

  • HyukJin Choi;Nam-Sun Oh;Dong-Hui Ko;Shin Taek Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Along with the growing interest in renewable energy development, Korea's west coast is one of the favorable regions for tidal power. Tidal power using tidal barrages that work like hydroelectric dams is a representative method of tidal power through long-term operation, but the promotion of tidal power projects is being delayed or stopped due to impacts on ecological changes, reproduction, water column processes and hydrology. In order to reduce the high construction cost and environmental cost problems caused by tidal power using tidal barrages, in this study, field experiments were conducted to develop and verify the performance of tidal power generation devices applicable to sea areas where dykes are already installed. As a result of conducting five cases of experiments using two water tanks, pipe lines, open channels, and water turbine and generator, the possibility of developing a power generation system capable of generating more than 10 kW output and more than 60% efficiency were confirmed. The results of this study can be used for small-scale tidal power by utilizing the existing dykes of the west coast.

Efficiency Assessment of Turbine for Tidal Current Power Plant by In-Field Experimental Test (현장계측에 의한 조류 발전용 수차의 효율 평가)

  • Han, Sang-Hun;Lee, Kwang-Soo;Yum, Ki-Dai;Park, Woo-Sun;Park, Jin-Soon;Yi, Jin-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.517-520
    • /
    • 2006
  • The Korean peninsula has a number of coastal sites where the rhythmic rising and lowering of water surface due to tides results in strong tidal current. The kinetic energy of these currents can be efficiently exploited by use of tidal current turbines. The pilot tidal current power plant is to be constructed at the Uldolmok narrow channel between J info and Haenam, Our ins next Year, and extensive coastal engineer ing research works have been carried out. This paper describes and analyzes some observation results of field test about the efficiency of Helical turbine for tidal current power plant. The efficiency of turbine, which is diameter 2.2m and height 2.5m, is evaluated meximum RPM, torque, and current velocity. The tested turbines had the maximum efficiencies of the bounds of 25 to 35% in the current velocity range between 1.4 and 2.6 m/s. This result shows that the pilot tidal current power plant needs three helical turbines with diameter 3.0m and height 3.6m to produce electric power 500kW.

  • PDF

Physical Experiment on Water Discharge Capability of Sluice Caisson for Tidal Power Plant (조력발전용 수문케이슨의 통수성능에 관한 수리모형실험)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyyu-Sang;Ahn, Suk-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.514-517
    • /
    • 2008
  • An hydraulic experiment was carried out in an open channel flume in order to investigate the water discharge capability of the sluice caisson for tidal power generation, which greatly affects the economical efficiency of the construction of a tidal power plant. To predict the influence of change in the major design parameters relating to the sluice shape on the water discharge capability of the sluice, the experiment was carried out very precisely. The experiment was carried out for the six different sluice models of different widths and bottom heights of the sluice throat section. The experimental data showed that the water discharge generally increased by increasing the width of the throat section if the side shape of the sluice was the same. In addition, the coefficient of discharge was larger when the bottom height of the throat section was higher for the two bottom heights that were tested.

  • PDF

Optimal Operation by integrating Sihwa Power into NamSihwa Systems (시화조력발전 연계에 의한 남시화 계통의 최적 운영 방안)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.120-126
    • /
    • 2009
  • This paper presents an optimal operating scheme by integrating Sihwa tidal power into NamSihwa systems. For optimal operation of NamSihwa systems, the sea levels of 1 minute interval using cubic interpolation based on the forecasted levels of high and low water are calculated. Especially, it is compared by three schemes to purchase total power from transmission system to purchase total power from tidal power system in time period that can generate tidal power and to purchase total power by comparing purchase costs from transmission system and tidal power system. The scheme may contribute to energy save in Korea that natural resources are lacking.

Acoustic Characteristics of Underwater Noise from Uldolmok Tidal Current Pilot Power Plant (울돌목 시험조류발전소의 수중소음 특성 연구)

  • Ko, Myungkwon;Choi, Jee Woong;Yi, Jin-Hak;Jeong, Weonmu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.523-531
    • /
    • 2012
  • Recently, as a result of increasing concern about eco-friendly power, the demand for the power stations using environmentally friendly powers such as photovoltaic energy, wind force, tidal power, and tidal current has been increasing worldwide. Among these power stations tidal current power plant requires strong current generated by the topographic characteristics of the ocean floor. Uldolmok waterway producing very strong current is an ideal location for a tidal current power generation. However the occurrence of anthropogenic underwater noise generated by the tidal current power station may affect the marine environment. Therefore, it is necessary to evaluate the noise radiated from the station and predict the range influenced by the radiated noise. In this paper, the measurements of radiated noise spectrum level by the tidal current power station are presented, and the source level per unit area is estimated. Finally, the propagation properties of the radiated noise in the Uldolmok waterway is evaluated from the model simulation using the parabolic equation method, RAM.

A Study on Perception and knowledge of 'Renewable Energy' of the Elementary School Teachers (신재생 에너지에 대한 초등 교사들의 인식과 지식 연구)

  • Han, Shin;Cho, Kyu-Dohng;Jung, Jin-Woo
    • Hwankyungkyoyuk
    • /
    • v.23 no.2
    • /
    • pp.82-96
    • /
    • 2010
  • The purposes of this study are to investigate the perception of renewable energy technology among elementary school teachers, and confirm whether elementary school teachers have basic knowledge about renewable energy sources, including solar, wind, and tidal power generation. We conducted preliminary interviews to gather information related to other studies about renewable energy. We developed the last interview question about the perception and knowledge of elementary school teachers regarding renewable energy. This study analyzed the transcribed responses of 10 elementary school teachers in Siheung-city, Gyeonggi-do, following 30-minute interviews. The study's findings are as follows. First, elementary school teachers recognize that they are unfamiliar with concepts and they have only shallow content knowledge about renewable energy. And they tended to distorted to other concepts, and analyze to different meanings. Second, elementary school teachers thought that knowledge about renewable energy should be part of a well-rounded education. And they felt positively about solar energy and wind power energy generation but they had a negative view towards tidal power generation because it destroys tideland. Third, teachers tended to confuse solar heat energy and geothermal energy, they tend to think this two energy sources the same. Teachers had generally correct concepts about wind power energy generation. In the case of tidal power generation, elementary school teachers answered mechanically that it is possible on the western sea, and that 'the difference between the rise and fall of the tide' grows. But they could not talk in depth about 'the difference between the rise and fall of the tide' and the force of waves. This suggests that they are answering by simple memorization and without deep understanding.

  • PDF

A Study on Energy Extraction from Tidal Currents

  • Hoang, Anh Dung;Yang, Chang-Jo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.79-79
    • /
    • 2011
  • The oceans are an untapped resource, capable of making a major contribution to our future energy needs. In the search for a non polluting renewable energy source, there is a push to find an economical way to harness energy from the ocean. Tidal stream is one of ocean energy form that is being investigated as potential source for power generation. Tidal current turbines are therefore designed as conversion machinery to generate power from tidal currents. A study on energy extraction from tidal currents is presented in this paper.

  • PDF

The Feasibility Analysis for PungDo Tidal Current Power Generation using SeaGen 1.2MW(600kW×2) Turbine (SeaGen 1.2MW(600kW×2)급 터빈을 이용한 풍도조류발전 타당성 분석)

  • Park, Tae-Young;Kim, Han-Sung;Kim, Yun-Wan;Park, Joo-Il;Kim, Kyung-Su
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.386-393
    • /
    • 2013
  • An feasibility analysis is performed for the tidal current power generation with the examination of the sea water speed distribution at Pungdo. In this analysis, the water speed distribution which is the key issue was obtained from the actual speed distribution data and results in "the annual current tidal power". Due to the lack of cost information, we applied EPRI data from the internet site instead of the actual information. The result could be used as a base data for the construction of current tidal power plant in the near future. And it is expected to provides good data for the Energy policy.

The Development of Tidal Power System Can be Installed in Existing Dykes - The Open Channel Experimental Verification (기존 방조제에 설치 가능한 조력발전 장치 개발 - 개수로 현장실험 검증)

  • HyukJin Choi;Dong-Hui Ko;Nam-Sun Oh;Shin Taek Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • As problems such as difficulties in securing stable energy resources and global warming due to the emission of greenhouse gases due to the use of fossil fuels have emerged, interest in the development of renewable energy is increasing. Since the tidal phenomenon has a regularity that occurs regularly with a certain period, it is possible to predict accurately in advance, which has a advantage in terms of energy recovery. Therefore, various methods have been devised to utilize the tide as an energy source. Tidal power using barrages is a representative method that is widely operated, but the promotion of tidal power generation projects is being delayed or stopped due to the decrease in the level of water in the tidal basin, changes in water quality and in the ecosystem. In this study, a field experiment was conducted to develop and verify the performance of a tidal power device applicable to sea areas where dykes are already installed. As a result of carrying out four cases of experiments using two water tanks, pipe lines, open channels, weirs, and water turbine and generator, the possibility of developing a power generation system capable of 10 kW output or more and 60% efficiency or more was confirmed. These research results can be used for small-scale tidal power by utilizing the existing dykes.