• Title/Summary/Keyword: tidal ellipse parameter

Search Result 2, Processing Time 0.019 seconds

Numerical Modeling of Tide and Tidal Current in the Kangjin Bay, South Sea, Korea

  • Ro, Young-Jae;Jun, Woong-Sik;Jung, Kwang-Young;Eom, Hyun-Min
    • Ocean Science Journal
    • /
    • v.42 no.3
    • /
    • pp.153-163
    • /
    • 2007
  • This study is based on a series of numerical modeling experiments to understand the tidal circulation in the Kangjin Bay (KB). The tidal circulation in the KB is mostly controlled by the inflow from two channels, Noryang and Daebang which introduce the open ocean water into the northern part of the KB with relatively strong tidal current, while in the southern part of the KB, shallowest region of the entire study area, weak tidal current prevails. The model prediction of the sea level agrees with observed records at skill scores exceeding 90 % in terms of the four major tidal constituents (M2, S2, K1, O1). However, the skill scores for the tidal current show relatively lower values of 87, 99, 59, 23 for the semi-major axes of the constituents, respectively. The tidal ellipse parameters in the KB are such that the semi-major axes of the ellipse for M2 range from 1.7 to 38.5 cm/s and those for S2 range from 0.5 to 14.4 cm/s. The orientations of the major-axes show parallel with the local isobath. The eccentricity values at various grid points of ellipses for M2 and S2 are very low with 0.2 and 0.06 on the average, respectively illustrating that the tidal current in the KB is strongly rectilinear. The magnitude of the tidal residual current speed in the KB is on the order of a few cm/s and its distribution pattern is very complex. One of the most prominent features is found to be the counter-clockwise eddy recirculation cell at the mouth of the Daebang Channel.

Characteristics of Tidal Current and Tidal Residual Current in the Chunsu Bay, Yellow Sea, Korea based on Numerical Modeling Experiments (수치모델링 실험을 통한 서해 천수만의 조류와 조석잔차류 특성)

  • Jung, Kwang Young;Ro, Young Jae;Kim, Baek Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.207-218
    • /
    • 2013
  • This study is based on a series of numerical modeling experiments to understand the circulation and its change in the Chunsu Bay (CSB), Yellow Sea of Korea. A skill analysis was performed for the tidal height and tidal current of the observation data using the amplitude and phase of the 4 major tidal constituents respectively for verification of modeling experimental results. As a result, most of the skill score was seen to be over 90%, so numerical model experiment results can be said to be in good agreement with the observed tidal height and tidal current. Tidal wave proceeded from the entrance of the CSB towards inside, and the tidal range gradually increased to the north. It took about 10 to 30 minutes for the tidal wave to reach to northern end. The tidal wave showed a characteristic to rotate counter-clockwise in the southern part. The tidal current flowed to the north-south direction along the bottom topography; the angle of the major axis appeared alongside the isobath. It showed the characteristics of reversing tidal current with the minor axis less than 10% of the major axis. The strength of the tidal residual current that is influenced by geographical factors including bathymetry and coastline showed the range of 1~30 cm/sec, greater in the south channel and smaller in northern Bay. Two pairs of cyclonic/anti-cyclonic eddies around Jukdo and 3~4 pairs of strong eddies at the southern part of CSB in hundreds of m to a few km size by relative vorticity derived from the tidal residual current.