• Title/Summary/Keyword: tidal

Search Result 3,133, Processing Time 0.029 seconds

Analysis of Operating Characteristics in Tidal Power Generation According to Tide Level

  • Hong, Jeong-Jo;Oh, Young-sun
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Tidal power generation plays a critical role in reducing greenhouse gas emissions. It uses a tidal force generated by gravitational force between the moon, the earth, and the sun. The change of seawater height generates the tide-generating force, and the magnitude of the change is the tide level. The tide level change has the same period as the tide-generating force twice a day, every 29.5 days, every year, and every 18.6 years. Sihwa Lake Tidal Power Station is Korea's first tidal power plant that began commercial power generation in August 2011 and has been accumulating a large volume of data on electricity production, power generation sales, sluice displacement, and tide levels. The purpose of this paper was to analyze the impact of the inefficiency factors affecting production and the tidal level change on tidal power generation and their characteristics using Sihwa Lake Tidal Power's operational performance data. Throughout this paper we show that tidal power generating operation is accurately predicting the trends of magnitude of tidal force to be periodical for each day. determining the drop to initiate the water turbine generator factoring the constraints on the operation of Sihwa Lake, and reflecting the water discharge through the floodgate and water turbine during the standby mode in the power generation plan to be in the optimal condition until the initiation of the next power generation can maximize power generation.

Tide And Tidal Current In The Estuary Of The Nakdong River (낙동강 하구의 조석과 유동)

  • Ryu, Cheong-ro;Chang, Sun-duck
    • 한국해양학회지
    • /
    • v.14 no.2
    • /
    • pp.71-77
    • /
    • 1979
  • Tidal waves and the fluctuation of current are studied by use of observed data on tidal level, flow velocity and river discharge in the estuarine region of the Nakdong River. Observed data on the tidal level at five stations are used to obtain the fluctuation of amplitude and phase of tides, and the change of the wave speed versus distance from the river mouth. Comnining these tidal data with the vertical distribution of horizontal velocity data, some characteristics of the periodic tidal flow are deduced: (1)Diminishing rates of the tidal amplitude ratio η / η$\_$0/ at high tide were 0.058η$\_$0H/ /Km at neap tides. The constant of phase change, K, was 0.035rad/km. (2)While proceeding landward, the shape of the tidal wave changes from symmetrical to asymmetrical. The traveling speed of the tidal wave crest was estimated to be 3.6∼5.2m/sec, while that of the tidal wave trough was 2.4∼ 3.5m/sec. (3)The flowing speed of the water varies periodically in accordance with the tidal period. The maximum speed of landward flow appeared approximately at two hours before the high tide, while that of seaward flow at two hours before the low tide. (4)The upstream boundary is deduced approximately to be 50km at spring tide and 44km at neap tide from the tidal velocity decreasing. the tidal influence area is estimated approximately to be 65km from the tidal amplitude damping.

  • PDF

Estimation of morphological change using waterline method in the Ganghwado tidal flats

  • Lee, Yoon-Kyung;Ryu, Joo-Hyung;Eom, Jin-Ah;Jo, Min-Jeong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.22-24
    • /
    • 2007
  • Waterline extraction is the one of widely used methods for studying changes in tidal flat environment and coastlines using multi-temporal optical images such as Landsat TM and Landsat ETM+. High dynamics of tidal currents and land reclamation which accelerate sedimentation and/or erosion cause waterline change in tidal flats. The amount of sediment deposited or eroded can be evaluated by precisely estimating waterline changes in tidal flats. The objective of this study is to detect the change of waterlines during 17 years and analyze the trends of erosion and sedimentation in the study areas. The Ganghwado tidal flat on the west coast of the Korean Peninsula was selected. The study area is famous for high dynamics of tidal currents and vast tidal flats. Land reclamation which has been carried out on a large scale is also considered as one of elements that have accelerated the environmental changes in this tidal flat. In this study, we acquired 26 waterlines from Landsat TM and Landsat ETM+ images. We extracted the waterline from each satellite image to generate a digital elevation map (DEM) which was used for reference and to compare with the other waterline which was extracted from DEM having a same tide. The result of comparison well depicted the areas of dominant sedimentation and erosion, and general trends of sedimentation and erosion according to sub-regions are also revealed during the investigation time. Results showed that erosion during a decade was dominant at the west of the Southern Ganghwado tidal flat, while sedimentation was dominant at the wide channel between the Southern Ganghwado tidal flat and the Yeongjongdo tidal flat. This area has been commonly affected by high currents and sedimentation energy. Although we were not able to verify the accuracy of the waterline changes, this result clearly showed the waterline change and therefore, the waterline extraction method used in this study has proven as an effective tool for long term tidal change estimation.

  • PDF

Evaluation of Tidal Stream Resources Near Uido Using an ADCIRC Model (ADCIRC 모델을 이용한 우이도 주변해역의 조류자원 평가)

  • Jeong, Haechang;Nguyen, Manh Hung;Kim, Bu-Gi;Kim, Jun-Ho;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.187-193
    • /
    • 2017
  • This study evaluated tidal stream energy resources according to tidal flow properties around Uido off the west coast of, Jeollanam-do, South Korea. A feasibility study was first carried out through the collection of bathymetry data and tidal phase information. For this simulation, a depth-averaged 2D ADCIRC (Advanced Circulation) model for real sea situations was applied to a Finite Element Method (FEM) approach for tides given the variation of tidal current speed. Hydrodynamics were simulated with 4 major tidal constituents (M2, S2, K1, and O1) after setting up 4 observation points. From the real depth-averaged model simulation results, it was found that the spring tide Higher High Water (HHW) and tidal current speed values at the 4 observation points were about 2.2 m and 1.33 m/s, respectively. The ADCIRC model results were analyzed with reference to the Korea Hydrographic and Oceanographic Agency's (KHOA) observed data for verification. Furthermore, using topographical characteristics via the Tidal Flux Method (TFM), tidal energy density distribution was calculated, indicating a maximum tidal energy density of about $1.75kW/m^2$ for the 5 assessment areas around Uido. The tidal energy density was evaluated with consideration given to topographical characteristics as well as tidal elevation and tidal current speed to determine an optimum tidal farm candidate.

Fractal Analysis of Tidal Channel using High Resolution Satellite Image (고해상도 위성 영상을 이용한 조류로의 프랙털 분석)

  • Eom, Jin-Ah;Lee, Yoon-Kyung;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.567-573
    • /
    • 2007
  • Tidal channel development is influenced by sediment type, grain size, composition and tidal current. Tidal channels are usually characterized by channel formation, density and shape. Quantitative analysis of tidal channels using remotely sensed data have rarely been studied. The objective of this study is to quantify tidal channels in terms of fractal dimension and compare different inter-tidal channel patterns and compare with DEM (Digital Elevation Model). For the fractal analysis, we used box counting method which had been successfully applied to streams, coastlines and others linear features. For a study, the southern part of Ganghwado tidal flats was selected which know for high dynamics of tidal currents and vast tidal flats. This area has different widths and lengths of tidal channels. IKONOS was used for extracting tidal channels, and the box counting method was applied to obtain fractal dimensions (D) for each tidal channel. Yeochari area where channels showed less dense development and low DEM had low fractal dimenwion near $1.00{\sim}1.20$. Area (near Donggumdo and Yeongjongdo) of dendritic channel pattern and high DEM resulted in high fractal dimension near $1.20{\sim}1.35$. The difference of fractal dimensions according to channel development in tidal flats is relatively large enough to use as an index for tidal channel classification. Therefore we could conclude that fractal dimension, channel development and DEM in tidal channel has high correlation. Using fractal dimension, channel development and DEM, it would be possible to quantify the tidal channel development in association with surface characteristics.

Changes of Sedimentary Environment in the Saemangeum Tidal Flat on the West Coast of Korea (새만금 갯벌의 퇴적환경 변화)

  • Woo, Han-Jun;Choi, Jae-Ung;An, Soon-Mo;Kwon, Su-Jae;Koo, Bon-Joo
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2006
  • The Saemangeum tidal flat with an area of approxirnately $233km^2$ is one of the biggest estuarine tidal flats on the west coast of Korea. Because of its location in the estuary of Mangyeong and Dongjin Rivers, the tidal flat receives large amount of sediments. A 33-km long sea dyke, enclosing a coastal zone of $401km^2$, was constructed to reclaim tidal flat in the Saemangeum area. The dyke construction radically changes the local tidal current regime and estuarine circulation. These have an effect on sedimentary environments in the tidal flat. On the tidal flats of the study area net deposition occurred, but net erosion occurred near tidal channel in 2004. The comparison of topography and surface sediments in summer 2004 with those in summer 1988 before the dyke construction showed that elevation increased with maximum 80cm and mean grain sizes were fining at Gwanghwal tidal flats. Sedimentary facies of two cores from Gwanghwal tidal flat revealed homogeneous layers in the upper part suggesting rapid deposition after the dyke construction. The sedimentation rate in Gwanghwal tidal flat(GW 6) using $^{210}Pb$ analysis was about 5.4cm/yr which is well matched with the sedimentation pattern revealed by change in topography.

Tidal Flats and Resident Life : The Case of Bay, Gomso Bay, Youngwang Tidal Flat (서해안 갯벌과 주민 생활 -가로림만, 곰소만, 영광 갯벌을 사례로-)

  • Lee, Yun-Hwa
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.3
    • /
    • pp.339-351
    • /
    • 2006
  • The purpose of this study is to investigate and analyze the relationships between tidal cycles, surface landforms, and sediments of tidal flats and their resident life. The study areas are Uengdo Ri in the Garolim Bay with wide the mud flat, Doou Ri in the Youngwang tidal flat which is developed sand flat and salt field, and Gomso Bay which is developed aquaculture industry. For resident around tidal flats, sea working takes precedence over farming, and main earnings gets from tidal flats. Resident life around the tidal flats is deeply related to tidal cycles, and low water level of spring tide becomes, they are most active and get more earnings than usual day, so it seems to be periodic markets. It is usually developed shellfish aquafarms in the mud flat, the stow net fishery in the sand flat, and salt fields in the mixed flat near the coast. Also a tidal flat has specialization of economic activity, and is divided into salt field and fish-farming in the supratidal zone, shellfish aquafarm in the intertidal zone, and oyster and porphyra culture in the subtidal zone.

  • PDF

A fundamental study on velocity restoration for tidal farm

  • Hoang, A.D.;Yang, C.J.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.266-273
    • /
    • 2013
  • With the worldwide trend of controlling the utilization of fossil fuels inducing global climate change, many efforts will have to be made on securing a sustainable energy supply. Tidal current is a concentrated form of gravitational energy, its resource is significant, but limited locations. To effectively capture tidal current energy from the sea, a group of tidal turbines should be formed and positioned with optimal size and spacing for absorbing from multiple points. Thus, the flow field including turbines becomes a huge domain, a so-called tidal farm. It can be very convenient technically and economically if a whole turbine farm is simulated by means of actuator disc thoery. So, the analysis method using actuator discs coupled with a solution of Reynolds Averaged Navier-Stokes (RANS) equations is adopted for actual tidal turbines. Actuator discs have regions where similar forces imposed by actual turbines are applied to a flow. As working in group formation, turbines naturally have interaction effects on one another. Therefore, the present paper investigate the evaluation on the operating performance of tidal farm in terms of the mutual influence among turbine units with various lateral and longitudinal spacing. Authors expect that results of the present study contribute to the development of tidal farm for the future potential energy.

A Study on Power Performance of a 1kW Class Vane Tidal Turbine

  • Yang, Changjo;Nguyen, Manh Hung;Hoang, Anh Dung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.143-151
    • /
    • 2015
  • Recently, tidal current energy conversion is a promising way to harness the power of tides in order to meet the growing demands of energy utilization. A new concept of tidal current energy conversion device, named Vane Tidal Turbine (VTT), is introduced in this study. VTT has several special features that are potentially more advantageous than the conventional tidal turbines, such as propeller type tidal turbines. The purpose of this study on VTT is to analyze the possibility of extracting the hydrokinetic energy of tidal current and converting it into electricity, and evaluate the performance of turbines for various numbers of blades (six, eight and twelve) using Computational Fluid Dynamics (CFD). At various tip-speed ratios (TSR), the six-bladed turbine obtains the highest power and torque coefficients, power efficiency is up to 28% at TSR = 1.89. Otherwise, the twelve blade design captures the smallest portion of available tidal current energy at all TSRs. However, by adding more blades, torque extracted from the rotor shaft of twelve-bladed turbine is more uniform due to the less interrupted generation of force for a period of time (one revolution).

Tidal Farming Optimization around Jangjuk-sudo by Numerical Modelling

  • Nguyen, Manh Hung;Jeong, Haechang;Kim, Bu-Gi;Yang, Changjo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.54-62
    • /
    • 2016
  • This study presents an approach of tidal farming optimization using a numerical modelling method to simulate tidal energy extraction for 1MW scale tidal stream devices around Jangjuk-sudo, South Korea. The utility of the approach in this research is demonstrated by optimizing the tidal farm in an idealized scenario and a more realistic case with three scenarios of 28-turbine centered tidal array (named A, B and C layouts) inside the Jangjuk-sudo. In addition, the numerical method also provides a pre-processing calculation helps the researchers to quickly determine where the best resource site is located when considering the position of the tidal stream turbine farm. From the simulation results, it is clearly seen that the net energy (or wake energy yield which includes the impacts of wake effects on power generation) extracted from the layout A is virtually equal to the estimates of speed-up energy yield (or the gross energy which is the sum of energy yield of each turbine without wake effects), up to 30.3 GWh/year.