• Title, Summary, Keyword: tianyuanshu

Search Result 8, Processing Time 0.022 seconds

Siyuan Yujian in the Joseon Mathematics (조선(朝鮮) 산학(算學)의 사원옥감(四元玉鑑))

  • Hong, Sung Sa;Hong, Young Hee;Lee, Seung On
    • Journal for History of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.203-219
    • /
    • 2017
  • As is well known, the most important development in the history of Chinese mathematics is materialized in Song-Yuan era through tianyuanshu up to siyuanshu for constructing equations and zengcheng kaifangfa for solving them. There are only two authors in the period, Li Ye and Zhu Shijie who left works dealing with them. They were almost forgotten until the late 18th century in China but Zhu's Suanxue Qimeng(1299) had been a main reference for the Joseon mathematics. Commentary by Luo Shilin on Zhu's Siyuan Yujian(1303) was brought into Joseon in the mid-19th century which induced a great attention to Joseon mathematicians with a thorough understanding of Zhu's tianyuanshu. We discuss the history that Joseon mathematicians succeeded to obtain the mathematical structures of Siyuan Yujian based on the Zhu's tianyuanshu.

Hong JeongHa's Tianyuanshu and Zhengcheng Kaifangfa (홍정하(洪正夏)의 천원술(天元術)과 증승개방법(增乘開方法))

  • Hong, Sung Sa;Hong, Young Hee;Kim, Young Wook
    • Journal for History of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • Tianyuanshu and Zengcheng Kaifangfa introduced in the Song-Yuan dynasties and their contribution to the theory of equations are one of the most important achievements in the history of Chinese mathematics. Furthermore, they became the most fundamental subject in the history of East Asian mathematics as well. The operations, or the mathematical structure of polynomials have been overlooked by traditional mathematics books. Investigation of GuIlJib (九一集) of Joseon mathematician Hong JeongHa reveals that Hong's approach to polynomials is highly structural. For the expansion of $\prod_{k=11}^{n}(x+a_k)$, Hong invented a new method which we name Hong JeongHa's synthetic expansion. Using this, he reveals that the processes in Zhengcheng Kaifangfa is not synthetic division but synthetic expansion.

Zeros of Polynomials in East Asian Mathematics (동양(東洋) 수학(數學)에서 다항방정식(多項方程式)의 해(解))

  • Hong, Sung Sa;Hong, Young Hee;Kim, Chang Il
    • Journal for History of Mathematics
    • /
    • v.29 no.6
    • /
    • pp.317-324
    • /
    • 2016
  • Since Jiuzhang Suanshu, mathematical structures in the traditional East Asian mathematics have been revealed by practical problems. Since then, polynomial equations are mostly the type of $p(x)=a_0$ where p(x) has no constant term and $a_0$ is a positive number. This restriction for the polynomial equations hinders the systematic development of theory of equations. Since tianyuanshu (天元術) was introduced in the 11th century, the polynomial equations took the form of p(x) = 0, but it was not universally adopted. In the mean time, East Asian mathematicians were occupied by kaifangfa so that the concept of zeros of polynomials was not materialized. We also show that Suanxue Qimeng inflicted distinct developments of the theory of equations in three countries of East Asia.

Sciences in the Song and Yuan Dynasties II (송·원대의 과학에 대하여 II -금에서 원으로-)

  • Jin, Yuzi;Kim, Young Wook
    • Journal for History of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.119-132
    • /
    • 2015
  • This survey is the second part of the history of science of Song and Yuan dynasties and will covers the period from Jin to Yuan. Following the first part, we look at the calendrical astronomy, mathematics and medicine. In this survey we again follow Yabuuchi's work on the history of science of Song and Yuan period and Du Shiran's work on the history of science of China. We start from the sciences and mathematics of Jin which inherited those of Northern Song and see how they influenced the whole China including Yuan and Southern Song. As a conclusion the tendency to practical usages in the Southern Song as well as the suppression of Han people in Yuan prevented developments of theoretical sciences in Yuan and Ming later.

Mathematical Structures of Polynomials in Jeong Yag-yong's Gugo Wonlyu (정약용(丁若鏞)의 산서(算書) 구고원류(勾股源流)의 다항식(多項式)의 수학적(數學的) 구조(構造))

  • Hong, Sung Sa;Hong, Young Hee;Lee, Seung On
    • Journal for History of Mathematics
    • /
    • v.29 no.5
    • /
    • pp.257-266
    • /
    • 2016
  • This paper is a sequel to our paper [3]. Although polynomials in the tianyuanshu induce perfectly the algebraic structure of polynomials, the tianyuan(天元) is always chosen by a specific unknown in a given problem, it can't carry out the role of the indeterminate in ordinary polynomials. Further, taking the indeterminate as a variable, one can study mathematical structures of polynomials via those of polynomial functions. Thus the theory of polynomials in East Asian mathematics could not be completely materialized. In the previous paper [3], we show that Jeong Yag-yong disclosed in his Gugo Wonlyu(勾股源流) the mathematical structures of Pythagorean polynomials, namely polynomials p(a, b, c) where a, b, c are the three sides gou(勾), gu(股), xian(弦) of a right triangle, respectively. In this paper, we show that Jeong obtained his results through his recognizing Pythagorean polynomials as polynomial functions of three variables a, b, c.

Mathematical Structures of Jeong Yag-yong's Gugo Wonlyu (정약용(丁若鏞)의 산서(算書) 구고원류(勾股源流)의 수학적(數學的) 구조(構造))

  • HONG, Sung Sa;HONG, Young Hee;LEE, Seung On
    • Journal for History of Mathematics
    • /
    • v.28 no.6
    • /
    • pp.301-310
    • /
    • 2015
  • Since Jiuzhang Suanshu, the main tools in the theory of right triangles, known as Gougushu in East Asia were algebraic identities about three sides of a right triangle derived from the Pythagorean theorem. Using tianyuanshu up to siyuanshu, Song-Yuan mathematicians could skip over those identities in the theory. Chinese Mathematics in the 17-18th centuries were mainly concerned with the identities along with the western geometrical proofs. Jeong Yag-yong (1762-1836), a well known Joseon scholar and writer of the school of Silhak, noticed that those identities can be derived through algebra and then wrote Gugo Wonlyu (勾股源流) in the early 19th century. We show that Jeong reveals the algebraic structure of polynomials with the three indeterminates in the book along with their order structure. Although the title refers to right triangles, it is the first pure algebra book in Joseon mathematics, if not in East Asia.

Zengcheng Kaifangfa and Zeros of Polynomials (증승개방법(增乘開方法)과 다항방정식(多項方程式)의 해(解))

  • Hong, Sung Sa;Hong, Young Hee;Kim, Chang Il
    • Journal for History of Mathematics
    • /
    • v.33 no.6
    • /
    • pp.303-314
    • /
    • 2020
  • Extending the method of extractions of square and cube roots in Jiuzhang Suanshu, Jia Xian introduced zengcheng kaifangfa in the 11th century. The process of zengcheng kaifangfa is exactly the same with that in Ruffini-Horner method introduced in the 19th century. The latter is based on the synthetic divisions, but zengcheng kaifangfa uses the binomial expansions. Since zengcheng kaifangfa is based on binomial expansions, traditional mathematicians in East Asia could not relate the fact that solutions of polynomial equation p(x) = 0 are determined by the linear factorization of p(x). The purpose of this paper is to reveal the difference between the mathematical structures of zengcheng kaifangfa and Ruffini-Honer method. For this object, we first discuss the reasons for zengcheng kaifangfa having difficulties to connect solutions with linear factors. Furthermore, investigating multiple solutions of equations constructed by tianyuanshu, we show differences between two methods and the structure of word problems in the East Asian mathematics.

Jin-Yuan Mathematics and Quanzhen Taoism (금원수학여전진도(金元数学与全真道))

  • Guo, Shuchun
    • Journal for History of Mathematics
    • /
    • v.29 no.6
    • /
    • pp.325-333
    • /
    • 2016
  • Chinese Mathematics during the period of Jin (1115-1234) and Yuan (1271-1368) is an integral part of the high achievements of traditional mathematics during the Song (962-1279) and Yuan dynasties, which is another peak in the history of Chinese mathematics, following the footsteps of the high accomplishments during the Warring States period (475-221 BCE), the Western Han (206 BCE-24 ADE), Three Kingdoms (220-280 AD), Jin dynasty (265-420 AD), and Southern and Northern Dynasties (420-589 AD). During the Jin-Yuan period, Quanzhen Taoism was a dominating branch in Taoism. It offered certain political protection and religious comforts to many during troubled times; it also provided a relatively stable environment for intellectual development. Li Ye (1192-1279), Zhu Shijie (fl. late 13th C to early 14th C) and Zhao Youqin (fl. late 13th C to early 14th C), the major actors and contributors to the Jin-Yuan Mathematics achievements, were either heavily influenced by the philosophy of Quanzhen Taoism, or being its followers. In certain Taoist Classics, Li Ye read the records of the relations of a circle and nine right triangles which has been known as Dongyuan jiurong 洞渊九容 of Quanzhen Taoism. These relations made significant contributions in the study of the circles inscribed in a right triangle, the reasoning of which directly led to the birth of the Method of Celestial Elements (Tianyuan shu 天元术), which further developed into the Method of Two Elements (Eryuan shu ⼆元术), the Method of Three Elements (Sanyuan shu 三元术) and the Method of Four Elements (Siyuan shu 四元术).