• Title/Summary/Keyword: thylakoid membrane protein

Search Result 26, Processing Time 0.021 seconds

The first insight into the structure of the Photosystem II reaction centre complex at $6{\AA}$ resolution determined by electron crystallography

  • Rhee, Kyong-Hi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.83-90
    • /
    • 1999
  • Electron crystallography of two-dimensional crystalsand electron cryo-microscopy is becoming an established method for determining the structure and function of a variety of membrane proteins that are providing difficult to crystallize in three dimension. In this study this technique has been used to investigate the structure of a ~160 kDa reaction centre sub-core complex of photosystem II. Photosystem II is a photosynthetic membrane protein consisting of more than 25 subunits. It uses solar energy to split water releasing molecular oxygen into the atmosphere and creates electrochemical potential across the thylakoid membrane, which is eventually utilized to generate ATP and NADPH. Images were taken using Philips CM200 field emission gun electron microscope with an acceleration voltage of 200kW at liquid nitrogen temperature. In total, 79 images recorded dat tilt angles ranging from 0 to 67 degree yielded amplitudes and phases for a three-dimensional map with an in-plant resolution of 6$\AA$ and 11.4$\AA$ in the third dimension shows at least 23 transmembrane helices resolved in a monomeric complex, of which 18 were able to be assigned to the D1, D2, CP47 , and cytochrome b559 alfa beta-subunits with their associated pigments that ae active in electron transport (Rhee, 1998, Ph.D.thesis). The D1/D2 heterodimer is located in the central position within the complex and its helical scalffold is remarkably similar to that of the reaction centres not only in purple bacteria but also in plant photosystem I (PSI) , indicating a common evoluationary origin of all types of reaction centre in photosynthetic organism known today 9RHee et al. 1998). The structural homology is now extended to the inner antenna subunit, ascribed to CP47 in our map, where the 6 transmembrane helices show a striking structural similarity to the corresponding helices of the PSI reaction centre proteins. The overall arrangement of the chlorophylls in the D1 /D2 heterodimer, and in particular the distance between the central pair, is ocnsistent with the weak exciton coupling of P680 that distinguishes this reaction centre from bacterial counterpart. The map in most progress towards high resolution structure will be presented and discussed.

  • PDF

Identification and Expression Analysis of Chloroplast p-psbB Gene Differentially Expressed in Wild Ginseng

  • Kim, Doo-Young;Kwon, Ki-Rok;Kang, Won-Mo;Jeon, Eun-Yi;Jang, Jun-Hyeog
    • Journal of Pharmacopuncture
    • /
    • v.15 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • Panax ginseng is a well-known herbal medicine in traditional Asian medicine. Although wild ginseng is widely accepted to be more active than cultivated ginseng in chemoprevention, little has actually been reported on the difference between wild ginseng and cultivated ginseng. Using suppressive subtraction hybridization, we cloned the p-psbB gene as a candidate target gene for a wild ginseng-specific gene. Here, we report that one of the clones isolated in this screen was the chloroplast p-psbB gene, a chlorophyll a-binding inner antenna protein in the photosystem II complex, located in the lipid matrix of the thylakoid membrane. Real-time results showed that the expression of the p-psbB gene was significantly up-regulated in wild ginseng as compared to cultivated ginseng. Thus, the p-psbB gene may be one of the important markers of wild ginseng.

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

Clone Identification of Cudraria Tricuspidata and Hibiscus Syriacus by Using PCR and Southern Hybridization (PCR과 Southern hybridization을 이용한 구지뽕나무와 무궁화의 클론감별)

  • Ryu, Jang-Bal;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.42-46
    • /
    • 1998
  • Polymerase chain reaction (PCR) and Southern hybridization analyses were carried out to identify clones of silk worm thorn (Cudraria tricuspidata) and Rose of sharon (Hibiscus syriacus) which look like one tree with two ar three, branches or two or three different trees. For PCR five different PCR primers $(17{\sim}24\;nucleotides)$ are derived from CaMV 35S promoter, nopaline synthase terminator and coding region of thylakoid membrane protein gene. In the case of silk worm thorn, about 500 bp of PCR product was produced from DNAs of one tree or branch in the presence of 35S primer alone. Southern hybridization analysis of genomic DNAs hybridized with $^{32}P$ labeled PCR product showed that the same size of DNA fragments were hybridized with different intensities. In addition, PCR analyses using 20 different primers of OPERON 10-mer kits showed that only OPA01 primer produced PCR products of different size. These results indicate that two different trees of silk worm thorn combined to one tree. In the case of the Rose of Sharon, the same size of PCR products were produced from three different samples but Southern hybridization with the above PCR product as a probe did not show any hybridized bands. PCR analyses in the presence of OPERON 10-mers showed OPA04 and OPA13 produced different products including same sizes of products. These, results indicate that three different trees of the Rose of Sharon seem to be derived from the tree.

  • PDF

Characterization of ent-Kaurenoic Acid 13-Hydroxylase in Steviol Biosynthesis of Stevia rebaudiana Bertoni (Stevia rebaudiana Bertoni의 Steviol 생합성 효소 ent-Kaurenoic Acid 13-Hydroxylase의 특성)

  • Shibata, Hitoshi;Kim, Keun-Ki
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.501-507
    • /
    • 1997
  • Chloroplasts isolated from Stevia rebaudiana Bertoni leaves contained an enzyme activity which catalyzed hydroxylation of ent-kaurenoic acid (ent-kaur-16-en-19-oic acid; ent-KA) to steviol (ent-13-hydroxy kaur-16-en-19-oic acid), the diterpenoid carboxylic alcohol which is the aglycone of sweet stevioside-related glycosides. $[^(14)C]-methylated$ ent-KA was used to localize ent-KA hydroxylase. $[^(14)C]-methyl-KA$ was most actively was transformed into methyl-steviol in chloroplast. The enzymatic activity was found in stroma fraction but not in thylakoid membrane in Stevia rebaudiana Bertoni. However, ent-KA 13-hydroxylase activity was not detected in stroma fraction of either Spinacia oleracea and Solidago altissima. The reaction products using $[^(14)C]-methyl-KA$ were purified and identified on TLC autoradiogram. The hydroxylation of ent-KA from stromal protein to form steviol required NADPH and oxygen. FAD and riboflavin stimulated the enzyme activity 1.5-and 1.7-fold, respectively. It also turned out that the activity of this enzyme using methyl-KA as a substrate was 16.7% that of ent-KA. The purified ent-KA 13-hydroxylase did not act on t-cinnamic acid, 4-hydroxyphenyl acetic acid, choline and resorcinol, known as monooxygenase and hydroxylase substrates.

  • PDF

Enhanced PHB Accumulation in Photosystem- and Respiration-defective Mutants of a Cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis sp. PCC 6803의 에너지 대사 결함 돌연변이 균주에서의 Poly(3-hydroxybutyrate) 축적량 증진)

  • Kim Soo-Youn;Choi Gang Guk;Park Youn Il;Park Young Mok;Yang Young Ki;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.67-73
    • /
    • 2005
  • Photoautotrophic bacteria are promising candidates for the production of poly(3-hydroxybutyrate) (PHB) since they can address the critical problem of substrate costs. In this study, we isolated 25 Tn5-inserted mutants of the Synechocystis sp. PCC 6803 which showed enhanced PHB accumulation compared to the wild-type strain. After 5-days cultivation under nitrogen-limited mixotrophic conditions, the intracellular levels of PHB content in these mutants reached up to $10-30\%$ of dry cell weight (DCW) comparable to $4\%$ of DCW in the wild-type strain. Using the method of inverse PCR, the affected genes of the mutants were mapped on the completely known genome sequence of Synechocystis sp. PCC 6803. As a result, the increased PHB accumulation in 5 mutants were found to be resulted from defects of genes coding for NADH-ubiquinone oxidoreductase, O-succinylbenzoic-CoA ligase, photosystem II PsbT protein or histidine kinase, which are involved in photosystem in thylakoid inner membrane of the cell. The values of $NAD(P)H/NAD(P)^+$ ratio in the cells of these mutants were much higher than that of the wild-type strain as measured by using pulse-amplitude modulated fluorometer, suggesting that PHB synthesis could be enhanced by increasing the level of cellular NAD(P)H which is a limiting substrate for NADPH-dependent acetoacetyl-CoA reductase. From these results, it is likely that NAD(P)H would be a limiting factor for PHB synthesis in Synechocystis sp. PCC 6803.