• Title/Summary/Keyword: thylakoid membrane protein

Search Result 26, Processing Time 0.023 seconds

Characteristics of Light Harvesting Chlorophyll-Protein Complex and Singlet Oxygen ($^1O_2$) Quenching in Leaf-burning Disease from Panax ginseng C. A. Meyer (인삼 Light Harvesting Chlorophyll Protein의 특성 및 엽소병에서 Singlet Oxygen($^1O_2$) Quenching)

  • 양덕조;이성택
    • Journal of Ginseng Research
    • /
    • v.13 no.2
    • /
    • pp.158-164
    • /
    • 1989
  • In order to determine the relationships between the lea(-burning disease and the light harvesting chlorophyll-protein (LHCP) complex in Panax ginseng C. A. Meyer, we investigated the chlorophyll-protein (CP) complex of the thylakoid membrane and its characteristics. In P. ginseng four Cp-complex bands determined by non-denaturing SDS-PAGE were identified CP I'(containing reaction center of photosystem I and LHCP I antennae), CP I (reaction center of photosystem I) LHCP II** (oligoform of LHCP II), and LHCP II (photosystem II antennae, CP 26 and CP 29) by Bassis and Dunahay's procedures. Under our experimental condition, the CP I band was only observed in P. ginseng and the band intensity of LHCP II** in P ginseng was higher than in spinach and soybean. There were differences in the absorption and fluorescence spectra and chlorophyll a/b ratio of the CP-complex bands between P. ginseng and other Plants. The Polypeptidr content of P. ginseng thylakoid was lower than in spinach and soybean thylakoid, and the Polypeptide profiles of P. ginseng was low band intensity, especially about 29-35 kD, 55 kD, and 60 kD, compared to spinach and soybean. The inhibitory effects of 2,5-dimethylfuran, specific singlet oxygen ($^1O_2$) quencher, showed that singlet oxygen destroyed 60% of chl.a, 90% of chl.b and 70% of carotenoid in bleaching P. ginseng with leaf-burning disease.

  • PDF

Changes of Chloroplast Ultrastructure and Thylakoid Membrane Proteins during Growth of Ginseng (Panax ginseng C.A. Meyer) Leaf (인삼(Panax ginseng C.A. Meyer) 잎의 생장과정에 따른 엽록체 미세구조 및 틸라코이드막 단백질의 변화)

  • Ahn, Joung-Sook;Park, Hoon;Kim, Woo-Kap
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.275-280
    • /
    • 1995
  • The formation of thylakoid membrane proteins and changes in the chloroplast ultrastructure of ginseng leaf were investigated as a function of time following the leaf emergence. The leaf chloroplast obtained just after the leaf emergence showed short rod-like thylakoids which were connected and arranged in 3~4 layers along the longitudinal axis of the chloroplast. The 10 DAE (days after emergence) chloroplast started to form grana structure. The typical grana structure was observed 17 DAE, and the grana was fully developed 28 DAE. The membrane proteins obtained from just after emerging leaf were separated into many minor bands indicating no CP-complex formation yet. LHC II was detected after 10 days. CP 47 and CP 43 were detected after 17 days. After 28 days, the PS I and PS II proteins were distinctly separated into CP 1, LHC II, CP 47, CP 43, CP 29, CP 27+24. Thus, the appearance of the light harvesting protein, LHC II, which was concentrated in grana stacks, was consis tent in time with the formation of grana stacks 17 DAE. Key words Chloroplast ultrastructure, grana, CP-complex, LHC II.

  • PDF

RAPID RECOVERY OF PHOTOSYNTHESIS FROM PHOTOINHIBITION IS RELATED TO FATTY ACID UNSATURATION OF CHLOROPLAST MEMBRANE LIPIDS IN CHILLING-RESISTANT PLANTS

  • Moon, Byoung-Yong;Kang, In-Soon;Lee, Chin-Bum
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • The susceptibility of chilling-resistant spinach plants. and of chilling-sensitive squash plants to photoinhibition was compared in terms of the activity of photosystem II, in relation to the deuce of fatty acid unsaturation of chloroplast membrane lipids. From thylakoid membranes of the plants. monogalactosyl diacylgtycerol, digalactosyl diacylglycerol. sulfoquinovosyt diacylglycerol, and phosphatidylglycerol were seperated as major lipid classes. It was found that the content of cis-unsaturated fatty acids of phosphatidylglycerol was greater by 32% in spinach than that in squash. When leaf disks were exposed to light at 5$\circ$C, 15$\circ$C and 25$\circ$C, photochemical efficiency of photosystem II. measured as the ratio of the variable to the maximum fluorescence of chlorophyll, declined markedly in squash plants, as compared to spinach plants. When leaf disks were exposed to strong light in the presence of lincomycin, an inhibitor of protein synthesis in chloroplasts, photoinhibition was accelerated in the two types of plants. Moreover, lincomycin treatment abolished the differences in the degree of susceptibility to strong light, which had been observed between the two types of plants. When the extent of photoinhibition of photosystem II-mediated electron transport was compared in thylakoid membranes isolated from the two types of plants, there were no differences in the degree of inactivation of photosystem II activity. However, when intact leaf disks were exposed to strong light either at 10$\circ$C or at 25$\circ$C, and then were allowed to recover either at 17$\circ$C or at 25$\circ$C in dim light. chilling-resistant plants such as spinach and pea showed marked recovery from photoinhibition, in contrast to chilling-sensitive plants, such as squash and sweet potato. whose recovery was strongly dependent on the temperature. These findings are discussed in relation to the unsaturation of fatty acids in membrane phosphatidylglycerol. It appears that fatty acid unsaturation of membrane lipids accelerates the recovery of photosystem H from photoinhibition, without affecting the photo-induced inactivation process of photosystem II associated with photoinhibition.

  • PDF

Studies on the Effect of Polyamine on Chlorophyll Contents and Chloroplast Peroxidase Activities in Rice Leaf Segments (벼잎 절편에서 Polyamine이 엽록소 함량 및 Chloroplast Peroxidase활성에 미치는 영향에 관한 연구)

  • 표병식;김영준강영희
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.115-121
    • /
    • 1993
  • The effect of polyamine on chlorophyll amount, chloroplast peroxidase and chloroplast thylakoid protein in rice leaf segments which were grown for 10 days(16 hrs, light : 8 hrs, dark) in a hormone-free MS medium containing polyamine was studied. Polyamine treatment increased the chlorophyll contents compared with the control in rice leaf segments. Especially spermine was most effective. Also, in rice leaf segments treated with polyamine chloroplast peroxidase activity was higher than in the control. The treatment with lmM of spermidine increased the enzyme activity by 100%. In polyamine treatment and control two major polypeptide bands corresponding to 56 and 25Kd molecular weight were clearly resolved with other minor bands by SDS-PAGE in the insoluble protein fraction. However, in these bands (56, 25Kd), the total area of protein in treating with polyamine were higher than that of the control. These results suggest that polyamine was an important factor in the chloroplast development of rice seedlings.

  • PDF

High Level Expression of a Protein Precursor for Functional Studies

  • Gathmann, Sven;Rupprecht, Eva;Schneider, Dirk
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.717-721
    • /
    • 2006
  • In vitro analyses of type I signal peptidase activities require protein precursors as substrates. Usually, these pre-proteins are expressed in vitro and cleavage of the signal sequence is followed by SDS polyacrylamide gel electrophoresis coupled with autoradiography. Radioactive amino acids have to be incorporated in the expressed protein, since the amount of the in vitro expressed protein is usually very low and processing of the signal peptide cannot be followed by SDS polyacrylamide gel electrophoresis alone. Here we describe a rapid and simple method to express large amounts of a protein precursor in E. coli. We have analyzed the effect of ionophors as well as of azide on the accumulation of expressed protein precursors. Azide blocks the function of SecA and the ionophors dissipate the electrochemical gradient across the cytoplasmic membrane of E. coli. Addition of azide ions resulted in the formation of inclusion bodies, highly enriched with pre-apo-plastocyanine. Plastocyanine is a soluble copper protein, which can be found in the periplasmic space of cyanobacteria as well as in the thylakoid lumen of cyanobacteria and chloroplasts, and the pre-protein contains a cleavable signal sequence at its N-terminus. After purification of cyanobacterial pre-apo-plastocyanine, its signal sequence can be cleaved off by the E. coli signal peptidase, and protein processing was followed on Coomassie stained SDS polyacrylamide gels. We are optimistic that the presented method can be further developed and applied.

Targeting Analysis of Lumenal Proteins of Chloroplast of Wheat using Proteomic Techniques

  • Kamal, Abu Hena Mostafa;Kim, Da-Eun;Oh, Myoung-Won;Chung, Keun-Yook;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Uozumi, Nobuyuki;Choi, Jong-Soon;Cho, Kun;Woo, Sun-Hee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.14-14
    • /
    • 2010
  • Plastid proteomics are essential organelles present in virtually all cells in plants and green algae. Plastids are responsible for the synthesis and storage of key molecules required for the basic architecture and functions of plant cells. The proteome of plastid, and in particular of chloroplast, have received significant amounts of attention in recent years. Various fractionation and mass spectrometry (MS) techniques have been applied to catalogue the chloroplast proteome and its sub-organelles compartments. To better understanding the function of the lumenal sub-organelles within the thylakoid network, we have carried out a systematical analysis and identification of the lumenal proteins in the thylakoid of wheat by using Tricine-SDS-PAGE, and LTQ-ESI-FTICR mass spectrometry followed by SWISS-PROT database searching. We isolation and fractionation these membrane from fully developed wheat leaves using a combination of differential and gradient centrifugation couple to high speed ultra-centrifuge. After collecting all proteins to eliminate possible same proteins, we estimated that there are 407 different proteins including chloroplast, chloroplast stroma, lumenal, and thylakoid membrane proteins excluding 20 proteins, which were identified in nucleus, cytoplasm and mitochondria. A combination of these three programs (PSORT, TargetP, TMHMM, and TOPPRED) was found to provide a useful tool for evaluating chloroplast localization, transit peptide, transmembranes, and also could reveal possible alternative processing sites and dual targeting. Finally, we report also sub-cellular location specific protein interaction network using Cytoscape software, which provides further insight into the biochemical pathways of photosynthesis. The present work helps understanding photosynthesis process in wheat at the molecular level and provides a new overview of the biochemical machinery of the thylakoid in wheat.

  • PDF

The Effect of Newly Synthesized Compounds on the Photosynthetic Electron Transport of Cyanobacteria (Anacystis nidulans $R_2$) (신규(新規) 합성화합물들이 cyanobacteria의 광합성전자전달계에 미치는 영향)

  • Hwang, I.T.;Kim, J.S.;Cho, K.Y.;Yoneyama, K.;Yoshida, S.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 1993
  • The Inhibiting activity of newly synthesized phenol (E-series) and triazine (T-series) derivatives was evaluated by using thylakoid membranes extracted from cyanobacteria (Anacystis nidulans $R_2$). There were no significant differences between phenol derivatives and dinoseb to the thylakoid membrane extracted from wild type in the Hill reaction. However, a phenol derivative, E-24 which has no -Cl at phenyl ring, did not show any activity. The longer the length of R substituents was in phenol derivatives, the lower inhibiting activity was in the Hill reaction. Triazine derivatives, T-27, T-28, T-40, T-41, T-47 and T-48 were also compared with diuron and atrazine. Among triazine compounds, T-27 and T-28 showed 10 and 30 times activity as high as atrazine to wild type, respectively. Other triazine derivatives, T-40, T-41, T-47 and T-48 showed low inhibiting activity to wild and mutant type. A structural difference of T-27 and T-28 from T-40, T-41, T-47 and T-48 was the presented of -C-NH-. Both T-27 and T-28 were very closely associated with serine, an amino acid located at the 264th position of D1 protein because of the resistant ratio(R/S) to mutant G-264 were higher than that of atrazine.

  • PDF

Regulation of Chlorophyll-Protein Complex Formation and Assembly in Wheat Thylakoid Membrane

  • Guseinova, I.M.;Suleimanov, S.Y.;Aliev, J.A.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.496-501
    • /
    • 2001
  • Lincomycin, an inhibitor of plastid protein synthesis, was found to block the synthesis of apoprotein P700 with a molecular mass of 72 kDa and the assembly of the Chl a-protein of PS I. Synthesis of the polypeptides of 48, 43.5, and 32 kDa of the PS II complex is also suppressed. This process is accompanied by the disappearance of the PS Two reaction center Chl a at 683 nm, and of the PS One reaction center Chl a at 690, 696, and 705 nm on the fourth derivative of the absorption spectra at 77K. Lincomycin does not affect the synthesis of LHC subunits. It increases the content of the two main Chl forms of LHC at 648 nm (Chl b) and 676 nm (Chl a). The low-temperature fluorescence ratio F736/F685 is also increased. However, the effect of cycloheximide (an inhibitor of cytoplasmic protein synthesis) leads to the reduction of polypeptides of the light-harvesting Chl a/b-protein complex in the range of 29.5-22 kDa. Under these conditions, the relative amount of Chl b and the F736/ F685 fluorescence ratio decrease significantly. This is obviously the result of blocking the LHC I and LHC II synthesis. At the same time rifampicin and actinomycin D (inhibitors which block transcription in chloroplast and nuclear genome, respectively) inessentially affect the characteristics of these complexes.

  • PDF

Photoreactivation of the Oxygen Evolving Center in TIB-treated Chloroplasts of Spinach (TIB로 처리된 시금치의 엽록체에서 산소발생계의 광재활성화)

  • 정화숙
    • Journal of Plant Biology
    • /
    • v.36 no.3
    • /
    • pp.259-266
    • /
    • 1993
  • In Tris-iso-butanol (TIB; Tris buffer pH 8.8 and 1% iso-butanol)-treated chloroplasts, oxygen evolving activity was more inhibited than Tris-treated chloroplasts, but restored highly by 2,6-dichlorophenol-indophenol (DCPIP) and photoreactivation. To understand the mechanism of this results of TIB in photosynthetic electron transport, system, oxygen consumption and evolution of PS I and PS II were measured and protein of the chloroplasts was analysed. In Tris- and TIB-treated chloroplasts, oxygen evolving activity was increased according to the light intensity. Under 48 W·m-2 light intensity, the oxygen evolving activity in both chloroplasts were similar but as the light intensity was increased, TIB-treated chloroplasts showed higher activity. Under 240 W·m-2 light intensity, TIB-treated chloroplasts showed about 25% higher oxygen evolving activity than Tris-treated chloroplasts. Oxygen evolving activity was increased after photoreactivation in both Tris-treated and TIB-treated chloroplasts. Addition of NH4Cl increased the activity in both chloroplasts but in TIB-treated chloroplasts the increase was 30% higher than that in Tris-treated chloroplasts. In PS I, oxygen evolving activity was not inhibited by both treatments whereas in PS II, significant difference was observed between two treatments. Addition of Mn2+ and Ca2+ enhanced oxygen evolution in both Tris- and TIB-treated chloroplasts. Though enhancement was higher in TIB-treated chloroplasts. No difference was observed n protein analysis of the two thylakoid membrane.

  • PDF