• 제목/요약/키워드: throughput bounds

검색결과 24건 처리시간 0.019초

Capacity Analysis of UWB Networks in Three-Dimensional Space

  • Cai, Lin X.;Cai, Lin;Shen, Xuemin;Mark, Jon W.
    • Journal of Communications and Networks
    • /
    • 제11권3호
    • /
    • pp.287-296
    • /
    • 2009
  • Although asymptotic bounds of wireless network capacity have been heavily pursued, the answers to the following questions are still critical for network planning, protocol and architecture design: Given a three-dimensional (3D) network space with the number of active users randomly located in the space and using the wireless communication technology, what are the expected per-flow throughput, network capacity, and network transport capacity? In addition, how can the protocol parameters be tuned to enhance network performance? In this paper, we focus on the ultra wideband (UWB) based wireless personal area networks (WPANs) and provide answers to these questions, considering the salient features of UWB communications, i.e., low transmission/interference power level, accurate ranging capability, etc. Specifically, we demonstrate how to explore the spatial multiplexing gain of UWB networks by allowing appropriate concurrent transmissions. Given 3D space and the number of active users, we derive the expected number of concurrent transmissions, network capacity and transport capacity of the UWB network. The results reveal the main factors affecting network (transport) capacity, and how to determine the best protocol parameters, e.g., exclusive region size, in order to maximize the capacity. Extensive simulation results are given to validate the analytical results.

다중 홉 무선 네트�p에서 지연을 고려한 멀티케스트 루팅 (Delay Guaranteed Bandwidth-Efficient Multicast Routing in Wireless Multi-hop Networks)

  • 손희석;이채영
    • 한국경영과학회지
    • /
    • 제41권2호
    • /
    • pp.53-65
    • /
    • 2016
  • Static wireless multi-hop networks, such as wireless mesh networks and wireless sensor networks have proliferated in recent years because of they are easy to deploy and have low installation cost. Two key measures are used to evaluate the performance of a multicast tree algorithm or protocol : end-to-end delay and the number of transmissions. End-to-end delay is the most important measure in terms of QoS because it affects the total throughput in wireless networks. Delay is similar to the hop count or path length from the source to each destination and is directly related to packet success ratio. In wireless networks, each node uses the air medium to transmit data, and thus, bandwidth consumption is related to the number of transmission nodes. A network has many transmitting nodes, which will cause many collisions and queues because of congestion. In this paper, we optimize two metrics through a guaranteed delay scheme. We provide an integer linear programming formulation to minimize the number of transmissions with a guaranteed hop count and preprocessing to solve the aforementioned problem. We extend this scheme not only with the guaranteed minimum hop count, but also with one or more guaranteed delay bounds to compromise two key metrics. We also provide an explanation of the proposed heuristic algorithm and show its performance and results.

실시간 무선 센서 네트워크에서 전송 지연 감소를 위한 MAC 개선 방안 (Improvement of MAC Protocol to Reduce the Delay Latency in Real-Time Wireless Sensor Networks)

  • 장호;정원석;이기동
    • 한국통신학회논문지
    • /
    • 제34권8A호
    • /
    • pp.600-609
    • /
    • 2009
  • 기존의 IEEE 802.11 DCF(Distributed Coordination Function)와 같은 전통적인 CSMA(carrier sense multiple access) 프로토콜은 네트워크 규모가 커짐에 따라서 성능의 급격한 감쇠와 전송 지연 증가를 초래한다. 이러한 문제를 효과적으로 해결하기 위하여 본 논문에서는 무선 센서 네트워크에 적합한 MAC(medium access control) 프로토콜을 제안한다. 기존의 DCF 프로토콜은 데이터 전송을 위한 슬롯(slot)을 선택할 때 패킷 충돌로 인한 재전송이 반복될 때 마다 크기가 커지는 경쟁 윈도우(contention window) 내에서 일반 확률 분포(uniform probability distribution)를 이용한 랜덤(random) 선택 기법을 사용하지만 제안한 프로토콜에서는 전송 지연을 최대한 감소시키기 위하여 경쟁 윈도우의 크기를 고정시키고, 전송 슬롯을 보다 효율적으로 선택하도록 비 균등(non-uniform)확률 분포를 사용하여 전송 슬롯을 랜덤하게 선정한다. 시뮬레이션을 통하여 제안한 프로토콜이 802.11 MAC 표준에 비하여 전송 지연이 감소함을 보여 전송 지연에 민감한 실시간 무선 센서 네트워크의 최적 지연 한계점(best latency bound)을 충족시키는 프로토콜임을 입증한다.

저가 관성센서의 오차보상을 위한 간접형 칼만필터 기반 센서융합과 소형 비행로봇의 자세 및 위치결정 (Indirect Kalman Filter based Sensor Fusion for Error Compensation of Low-Cost Inertial Sensors and Its Application to Attitude and Position Determination of Small Flying robot)

  • 박문수;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.637-648
    • /
    • 2007
  • This paper presents a sensor fusion method based on indirect Kalman filter(IKF) for error compensation of low-cost inertial sensors and its application to the determination of attitude and position of small flying robots. First, the analysis of the measurement error characteristics to zero input is performed, focusing on the bias due to the temperature variation, to derive a simple nonlinear bias model of low-cost inertial sensors. Moreover, from the experimental results that the coefficients of this bias model possess non-deterministic (stochastic) uncertainties, the bias of low-cost inertial sensors is characterized as consisting of both deterministic and stochastic bias terms. Then, IKF is derived to improve long term stability dominated by the stochastic bias error, fusing low-cost inertial sensor measurements compensated by the deterministic bias model with non-inertial sensor measurement. In addition, in case of using intermittent non-inertial sensor measurements due to the unreliable data link, the upper and lower bounds of the state estimation error covariance matrix of discrete-time IKF are analyzed by solving stochastic algebraic Riccati equation and it is shown that they are dependant on the throughput of the data link and sampling period. To evaluate the performance of proposed method, experimental results of IKF for the attitude determination of a small flying robot are presented in comparison with that of extended Kaman filter which compensates only deterministic bias error model.