• 제목/요약/키워드: three-state model

검색결과 1,292건 처리시간 0.027초

삼차원정상지하수모형에 의한 홍적대지의 지하수류동해석 (Groundwater Flow Analysis Using a Steady State Three-dimensional Model in an Upland Area)

  • 배상근
    • 물과 미래
    • /
    • 제22권1호
    • /
    • pp.81-90
    • /
    • 1989
  • 호수와 접하고 있는 홍적대지의 지하수류동계를 알기 위하여 삼차유한차분모형을 개발하여 삼차원정상모의 발생을 행하였다. 대표지층속에 점토층이 렌즈상으로 포함되어 있어 세가지 경우의 이방성을 고려하였다. 모의 발생에는 60$\times$50$\times$30=90,000의 격자점을 설정하였으며 수속판정체계는 0.001m로 하였다. 세가지 경우의 이방성에 대하여, 삼차원정상모의 발생을 행하여 얻어진 결과로부터 해석된 지하수류동계와 추적자 및 수질에 의한 해석(배.비근, 1987)의 결과를 비교하였다. 삼차원해석에서 얻어진 네 개의 대표적인 연직2차원 등 포텐샬단면으로부터 연구지역의 지하수류동계를 추정하였으며 그 결과는 유역산출율과 지하수의 함량-유출량 분포로부터 추정되는 결과와 다름이 없었다.

  • PDF

하천유역의 유사량의 비교연구 (Comparison of Sediment Yield by IUSG and Tank Model in River Basin)

  • 이영화
    • 한국환경과학회지
    • /
    • 제18권1호
    • /
    • pp.1-7
    • /
    • 2009
  • In this study a sediment yield is compared by IUSG, IUSG with Kalman filter, tank model and tank model with Kalman filter separately. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. In the IUSG with Kalman filter, the state vector of the watershed sediment yield system is constituted by the IUSG. The initial values of the state vector are assumed as the average of the IUSG values and the initial sediment yield estimated from the average IUSG. A tank model consisting of three tanks was developed for prediction of sediment yield. The sediment yield of each tank was computed by multiplying the total sediment yield by the sediment yield coefficients; the yield was obtained by the product of the runoff of each tank and the sediment concentration in the tank. A tank model with Kalman filter is developed for prediction of sediment yield. The state vector of the system model represents the parameters of the tank model. The initial values of the state vector were estimated by trial and error.

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.

식물계를 고려한 지표-대기 상호작용의 수치모의 (Numerical modeling of Atmosphere - Surface interaction considering Vegetation Canopy)

  • 이화운;이순환
    • 한국환경과학회지
    • /
    • 제3권1호
    • /
    • pp.17-29
    • /
    • 1994
  • An one dimensional atmosphere-vegetation interaction model is developed to discuss of the effect of vegetation on heat flux in mesoscale planetary boundary layer. The canopy model was a coupled system of three balance equations of energy, moisture at ground surface and energy state of canopy with three independent variables of $T_f$(foliage temperature), $T_g$(ground temperature) and $q_g$(ground specific humidity). The model was verified by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HYPEX-MOBHLY experiment. As the result, both vegetation and soil characteristics can be emphasized as an important factor iii the analysis of heat flux in the boundary layer. From the numerical experiments, following heat flux characteristics are clearly founded simulation. The larger shielding factor(vegetation) increase of $T_f$ while decrease $T_g$. because vegetation cut solar radiation to ground. Vegetation, the increase of roughness and resistance, increase of sensible heat flux in foliage while decrease the latent heat flux in the foliage.

  • PDF

Dual-model Predictive Direct Power Control for Grid-connected Three-level Converter Systems

  • Hu, Bihua;Kang, Longyun;Feng, Teng;Wang, Shubiao;Cheng, Jiancai;Zhang, Zhi
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1448-1457
    • /
    • 2018
  • Many researchers devote themselves to develop model-predictive direct power control (MPDPC) so as to accelerate the response speed of the grid-connected systems, but they are troubled its large computing amount. On the basis of MPDPC, dual MPDPC (DMPDPC) is presented in this paper. The proposed algorithm divides the conventional MPDPC into two steps. In the first step, the optimal sector is obtained, which contains the optimal switching state in three-level converters. In the second step, the optimal switching state in the selected sector is searched to trace reference active and reactive power and balance neutral point voltage. Simulation and experiment results show that the proposed algorithm not only decreases the computational amount remarkably but also improves the steady-state performance. The dynamic response of the DMPDPC is as fast as that of the MPDPC.

Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface

  • Zhao, Zhijun;Zhao, JingDong;Liu, Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.237-246
    • /
    • 2013
  • It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can be found influencing the landing performance: the retro-rocket thrust T, damping element damping $c_1$, and cardan element damping $c_2$. In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the parameters T and $c_1$, the cardan element damping $c_2$ is calculated using the landing dynamic model, which is built by Lagrange equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when landing with the three estimated parameters T, $c_1$, and $c_2$. Therefore, the landing dynamic model and methods to estimate key parameters are reasonable, and are useful for guiding the design of the landing mechanism.

Open-slip coupled model for simulating three-dimensional bond behavior of reinforcing bars in concrete

  • Shang, Feng;An, Xuhui;Kawai, Seji;Mishima, Tetsuya
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.403-419
    • /
    • 2010
  • The bond mechanism for reinforcing bars in concrete is equivalent to the normal contact and friction between the inclined ribs and the surrounding concrete. Based on the contact density model for the computation of shear transfer across cracks, an open-slip coupled model was developed for simulating three-dimensional bond behavior for reinforcing bars in concrete. A parameter study was performed and verified by simulating pull-out experiments of extremely different boundary conditions: short bar embedment with a huge concrete cover, extremely long bar embedment with a huge concrete cover, embedded aluminum bar and short bar embedded length with an insufficient concrete cover. The bar strain effect and splitting of the concrete cover on a local bond can be explained by finite element (FE) analysis. The analysis shows that the strain effect results from a large local slip and the splitting effect of a large opening of the interface. Finally, the sensitivity of rebar geometry was also checked by FE analysis and implies that the open-slip coupled model can be extended to the case of plain bar.

성장곡선 모형 적용을 통한 기술수준평가 사례 연구 : 특정 수산과학기술 분야를 중심으로 (Case Study on Measuring Technology Level Applying Growth Curve Model: Three Core Areas of Fishery Science and Technology)

  • 김완민;박주찬;박병무
    • 수산경영론집
    • /
    • 제46권3호
    • /
    • pp.103-118
    • /
    • 2015
  • The purpose of this paper is to discuss possibilities of applying growth curve models, such as Logistic, Log-Logistic, Log-Normal, Gompertz and Weibull, to three specific technology areas of Fishery Science and Technology in the process of measuring their technology level between Korea and countries with the state-of-the art level. Technology areas of hazard control of organism, environment restoration, and fish cluster detect were selected for this study. Expert panel survey was conducted to construct relevant panel data for years of 2013, 2016, and a future time of approaching the theoretical maximum technology level. The size of data was 70, 70 and 40 respectively. First finding is that estimation of shape and location parameters of each model was statistically significant, and lack-of-fit test using estimated parameters was statistically rejected for each model, meaning all models were good enough to apply for measuring technology levels. Second, three models other than Pearl and Gompertz seemed very appropriate to apply despite the fact that previous case studies have used only Gompertz and Pearl. This study suggests that Weibull model would be a very valid candidate for the purpose. Third, fish cluster detect technology level is relatively higher for both Korea and a country with the state-of-the-art among three areas as of 2013. However, all three areas seem to be approaching their limits(highest technology level point) until 2020 for countries with the state-of-the-art. This implies that Korea might have to speed up her research activities in order to catch up them prior to 2020. Final suggestion is that future study may better apply various and more appropriate models respectively considering each technology characteristics and other factors.

Experimental study on tuned liquid damper performance in reducing the seismic response of structures including soil-structure interaction effect

  • Lou, Menglin;Zong, Gang;Niu, Weixin;Chen, Genda;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.275-290
    • /
    • 2006
  • In this paper, the performance of a tuned liquid damper (TLD) in suppressing the seismic response of buildings is investigated with shake table testing of a four-story steel frame model that rests on pile foundation. The model tests were performed in three phases with the steel frame structure alone, the soil and pile foundation system, and the soil-foundation-structure system, respectively. The test results from different phases were compared to study the effect of soil-structure interaction on the efficiency of a TLD in reducing the peak response of the structure. The influence of a TLD on the dynamic response of the pile foundation was investigated as well. Three types of earthquake excitations were considered with different frequency characteristics. Test results indicated that TLD can suppress the peak response of the structure up to 20% regardless of the presence of soils. TLD is also effective in reducing the dynamic responses of pile foundation.

Parametric study using finite element simulation for low cycle fatigue behavior of end plate moment connection

  • Lim, Chemin;Choi, Wonchang;Sumner, Emmett A.
    • Steel and Composite Structures
    • /
    • 제14권1호
    • /
    • pp.57-71
    • /
    • 2013
  • The prediction of the low cycle fatigue (LCF) life of beam-column connections requires an LCF model that is developed using specific geometric information. The beam-column connection has several geometric variables, and changes in these variables must be taken into account to ensure sufficient robustness of the design. Previous research has verified that the finite element model (FEM) can be used to simulate LCF behavior at the end plate moment connection (EPMC). Three critical parameters, i.e., end plate thickness, beam flange thickness, and bolt distance, have been selected for this study to determine the geometric effects on LCF behavior. Seven FEMs for different geometries have been developed using these three critical parameters. The finite element analysis results have led to the development of a modified LCF model for the critical parameter groups.