• 제목/요약/키워드: three-point bending test

검색결과 306건 처리시간 0.029초

3점 굽힘 하중 해석을 통한 금속 판재형 도어 임팩트 단면형상 최적설계 (Optimal Section Design for Metal Press Door Impact Beam Development by 3-Point Bending Analysis)

  • 김선용
    • 한국산학기술학회논문지
    • /
    • 제20권7호
    • /
    • pp.166-172
    • /
    • 2019
  • 금속 일체형 판재 도어 임팩트 빔 개발을 위해 단면 형상의 최적설계를 진행하였다. 기존의 도어 임팩트는 충격을 흡수하는 강관과 양쪽에 브라켓을 용접하여 자동차에 설치하는 구조로 이루어졌다. 하지만, 브라켓을 설치하기 위한 용접작업은 생산성을 떨어뜨리고 생산단가를 증가시키는 과정이다. 이러한 단점을 극복하기 위해 일체형 판재 도어 임팩트 빔의 개발은 반드시 필요한 공정이다. 본 논문에서는 일체형 판재 도어 임팩트의 단면 형상을 수치해석의 방법으로 제안하는 연구를 진행하였다. 외부 충격에 대한 반력 하중 및 생산성을 고려하여 엔지니어의 직관적인 설계 형상 6가지에 대하여 수치해석을 진행하였다. 객관적인 비교를 위해 3점 굽힘 하중 실험을 모사하는 유한요소해석을 진행하였다. 형상과 치수가 상이한 6가지의 단면 형상 중 최적의 형상을 선정하고, 상세 설계를 위해 단면형상의 높이와 폭의 치수를 변화시키며 해석을 진행하였다. 이를 통해, 일체형 판재 도어 임팩트의 최적의 단면 형상을 제안하였다.

주조 형상기억 니켈-티타늄 합금의 초탄성 (SUPERELASTICITY OF CAST SHAPE MEMORY Ni-Ti ALLOY)

  • 최동익;최목균
    • 대한심미치과학회지
    • /
    • 제3권1호
    • /
    • pp.32-43
    • /
    • 1995
  • Ni-Ti alloy has excellent corrosion resistance, biocompatibility, shape memory effect and superelasticity, so it has been used widely in biomedical fields. But it has difficulty in casting due to its high melting temperature and oxygen affinity at high temperature. Recently it has been attempted to cast Ni-Ti alloy using new casting machine and investment. The purpose of this study was to examine the superelastic behavior of cast shape memory Ni-Ti alloy and to compare the mechanical properties of the cast shape memory alloy with those of commercial alloys for removable partial denture framework. Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was cast with dental argon-arc pressure casting machine and Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy, pure titanium were cast as reference. Experimental cast Ni-Ti alloy was treated with heat($500{\pm}2^{\circ}C$) in muffle furnace for 1 hour. Transformation temperature range of cast Ni-Ti alloy was measured with differential scanning calorimetry. The superelastic behavior and mechanical properties of cat Ni-Ti alloy were observed and evaluated by three point bending test, ultimate tensile test, Vickers microhardness test and scanning electron microscope. The results were as follows : 1. Cast Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was found to have superelastic behavior. 2. Stiffness of cast Ni-Ti alloy was considerably lesser than that of commercial alloys for removable partial denture. 3. Permanent deformation was observed in commercial alloys for removable partial denture framework at three point bending test over proportional limit(1.5mm deflection), but was not nearly observed in cast Ni-Ti alloy. 4. On the mechanical properties of ultimate tensile strength, elongation and Vickers microhardness number, cast Ni-Ti alloy was similiar to Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy and pure titanium. With these results, cast Ni-Ti alloy had superelastic behavior and low stiffness. Therefore, it is suggested that cast Ni-Ti alloy may be applicated to base metal alloy for removable partial denture framework.

  • PDF

Generalized fracture toughness for specimens with re-entrant corners: Experiments vs. theoretical predictions

  • Carpinteri, Alberto;Cornetti, Pietro;Pugno, Nicola;Sapora, Alberto;Taylor, David
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.609-620
    • /
    • 2009
  • In this paper the results of a series of experimental tests upon three-point bending specimens made of polystyrene and containing re-entrant corners are firstly described. Tests involved different notch angles, different notch depths and finally different sizes of the samples. All the specimens broke at the defect, as expected because of the material brittleness and, hence, the generalized stress intensity factor was expected to be the governing failure parameter. Recorded failure loads are then compared with the predictions provided by a fracture criterion recently introduced in the framework of Finite Fracture Mechanics: fracture is assumed to propagate by finite steps, whose length is determined by the contemporaneous fulfilment of energy balance and stress requirements. This fracture criterion allows us to achieve the expression of the generalized fracture toughness as a function of the tensile strength, the fracture toughness and the notch opening angle. Comparison between theoretical predictions and experimental data turns out to be more than satisfactory.

Slim Multi-Layer Printed Circuit Boards 의 굽힘 강도 개선에 관한 실험적 연구 (Experimental Study on the Improvement of Flexural Strength In Slim Multi-Layer Printed Circuit Boards)

  • 김상목;구태완;송우진;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.321-325
    • /
    • 2007
  • Recently, demands on thin multi-layer printed circuit boards(PCB) have been rapidly increased with broad spread of personal portable digital appliances such as multi-media. In case of mobile phone, however, the fact that PCBs have low flexural strength might cause defects. The purpose of this study is to improve the flexural strength by substituting the well-known GFRP(glass fiber reinforced plastic) for CFRP(carbon fiber reinforced plastic). Firstly, finite element simulation was carried out using ABAQUS to find out a unique CFRP layer that has a role to sustain the applied forces mainly in PCB. Secondly, three point bending tests were conducted with the newly designed CFRP PCB model to verify the improvement of the flexural strength. Consequently, it is shown that PCB layered with the CFRP on both outer sides of the board can be used to improve the flexural strength effectively.

  • PDF

유도무기 케이블 페어링의 강도 해석 및 접착재 강도 시험 (Bonding Stress Analysis of Cable Fairings used in Small Guided Missiles and Strength Tests of Bonding Materials)

  • 구남서;윤광준;신영석;이열화;정해용;김병화
    • 한국항공우주학회지
    • /
    • 제33권6호
    • /
    • pp.76-82
    • /
    • 2005
  • 유도무기의 케이블 페어링은 공력하중 및 기계적 하중으로부터 전선 케이블을 보호하기 위하여 설치된다. 케이블 페어링을 설계하기 위해서는 유도무기 본체와 케이블 페어링 사이의 응력 분포가 필요하다. 본 연구에서는 케이블 페어링의 접착 응력 및 접착 강도 해석 기법을 고찰하여 프로그램화 하였다. 또한, 고온용 접착재에 대한 인장 시험과 3점 굽힘 시험을 통하여 강도를 계측하였고 이를 케이블 페어링의 설계에 적용하였다.

도재용착주조관용 비귀금속 합금의 사전 열처리가 도재-금속의 결합 강도에 미치는 효과 (The effect of oxidation heat treatment on porcelain to metal bond strength)

  • 김치영;남상용
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.43-46
    • /
    • 1997
  • The interfacial bond strength and microstructural analysis of pre-heat treated porcelain-fused-metal (PFM) were investigated using a mechanical three-point bending tester and scanning electron microscope(SEM). Four kinds of heat treated samples were prepared as follows; A: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, hold 3min under vacuum, B: heating $1200^{\circ}F\rightarrow1600^{\circ}F$ holding 1min, reheating $\rightarrow1850^{\circ}F$ under vacuum condition, C: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 3min in the air, repeat same heat treatment process under vacuum condition, D: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 1min in the air. The three-point bending test results shows that the interfacial bond strength of specimen B and C were higher than that of A and B. The SEM study reveals that Specimen C shows the highest surface density.

  • PDF

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Salar Rasti;Hossein Showkati;Borhan Madroumi Aghbashi;Soheil Nejati Ozani;Tadeh Zirakian
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.679-691
    • /
    • 2023
  • The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.

노치 유무와 섬유혼입률에 따른 UHPCC의 휨인장강도 비교 (Comparison of Flexural Tensile Strength according to the Presence of Notch and Fiber Content in Ultra High Performance Cementitious Composites)

  • 강수태
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.525-533
    • /
    • 2012
  • 이 연구에서는 UHPCC에서 섬유혼입률에 따른 초기균열강도 및 휨인장강도의 변화를 0~5 vol.% 범위에서 조사하였으며, 노치의 여부에 따른 영향을 파악하기 위해 노치가 없는 보에 대한 4점 재하실험 및 노치 낸 보에 대한 3점 재하실험을 같이 실시하였다. 실험 결과로부터 섬유혼입률이 증가함에 따라 휨인장강도는 선형적으로 강도가 향상됨을 확인할 수 있었고, 초기균열강도의 경우에는 1 vol.% 이상에서는 강도향상을 나타내었으나 그 이하의 섬유혼입에서는 강도향상 효과가 거의 없는 것으로 나타났다. 노치 유무에 따른 휨 실험으로부터 구한 UHPCC의 초기균열발생강도 및 휨 인장강도를 비교했을 때, 섬유혼입률에 따라 노치의 영향이 변하는 것으로 나타났다. 섬유혼입률이 증가함에 따라 노치에서의 응력집중의 영향이 감소하여 강도 차이가 점차 줄어들었으며, 높은 섬유혼입률에서는 노치에 의한 응력집중효과는 없어지고 균열면의 상태 및 크기효과의 영향이 지배적으로 작용하여 노치낸 보의 강도가 좀 더 크게 나타났다.

3D 프린터에 공급되는 PLA 필라멘트의 물성치 측정 (Measurement of Structural Properties of PLA Filament as a Supplier of 3D Printer)

  • 최원;우재형;전정배;윤성수
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.141-152
    • /
    • 2015
  • Most of agricultural structures are consisted of complex components and exposed to various boundary conditions. There have been no ways to express those structures exactly for model experiment. As an alternative, 3D printer can produce any type of solid model. However, there are limited informations related to structural experiments using 3D printer. The object of this study gives the basic informations to structural engineers who try to use 3D printer for model experiment. When PLA was used as a supplier for 3D printer, the outcomes showed less heat deformation to compare with ABS. To test the material properties, two kinds of experiments (three-point flexibility test and compression test) were executed using universal testing machine. In three-point flexibility test, plastic hinge and its deformation were developed as observed in material such as steel. The behavior was in a linear elastic state, and elastic bending modulus and yield force were evaluated. In the compression test using unbraced columns with hinge-hinge boundary condition, the constant yield forces were observed regardless of different lengths in all columns with same section size, whereas the compressive elastic modulus was increased as the length of column was increased. The suggested results can be used for model experiments of various agricultural structures consisted of single material.

A direct XFEM formulation for modeling of cohesive crack growth in concrete

  • Asferg, J.L.;Poulsen, P.N.;Nielsen, L.O.
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.83-100
    • /
    • 2007
  • Applying a direct formulation for the enrichment of the displacement field an extended finite element (XFEM) scheme for modeling of cohesive crack growth is developed. Only elements cut by the crack is enriched and the scheme fits within the framework of standard FEM code. The scheme is implemented for the 3-node constant strain triangle (CST) and the 6-node linear strain triangle (LST). Modeling of standard concrete test cases such as fracture in the notched three point beam bending test (TPBT) and in the four point shear beam test (FPSB) illustrates the performance. The XFEM results show good agreement with results obtained by applying standard interface elements in FEM and with experimental results. In conjunction with criteria for crack growth local versus nonlocal computation of the crack growth direction is discussed.