• 제목/요약/키워드: three-dimensional panels

검색결과 85건 처리시간 0.019초

3차원 아음속 비정렬 패널법을 이용한 정상/비정상 공력 해석 프로그램 개발 (Development of Steady/Unsteady Aerodynamic Analysis Program Using 3-Dimensional Subsonic Unstructured Panel Method)

  • 박진이;백청;이승수
    • 한국항공우주학회지
    • /
    • 제50권6호
    • /
    • pp.367-376
    • /
    • 2022
  • 본 연구에서는 정상 및 비정상 공력 해석이 가능한 3차원 아음속 비정렬 패널 프로그램을 개발하고 검증하였다. 물체의 표면을 삼각형 또는 사각형 패널에 source와 doublet의 potential을 분포하여 모델링하였다. 따라서 복잡한 형상과 다물체도 쉽게 모델링 할 수 있다. Kelvin theory와 비정상 Kutta condition을 이용하여 비정상 유동에서 wake의 doublet 크기를 결정하였다. 2차원 및 3차원에서 정상 및 비정상 유동을 해석하여 그 결과를 해석해와 기존의 수치해와 비교하였다.

Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method

  • Yas, M.H.;Aragh, B. Sobhani;Heshmati, M.
    • Structural Engineering and Mechanics
    • /
    • 제37권5호
    • /
    • pp.529-542
    • /
    • 2011
  • Three dimensional solutions for free vibrations analysis of functionally graded fiber reinforced cylindrical panel are presented, using differential quadrature method (DQM). The orthotropic panel is simply supported at the edges and is assumed to have an arbitrary variation of reinforcement volume fraction in the radial direction. Suitable displacement functions that identically satisfy the simply supported boundary condition are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical panel and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced composite panel due to the reduction in spatial mismatch of material properties.

충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구 (A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles)

  • 전광우;신광복;고희영;김대환
    • 대한기계학회논문집A
    • /
    • 제33권1호
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.

Numerical Simulation of Prestressed Precast Concrete Bridge Deck Panels Using Damage Plasticity Model

  • Ren, Wei;Sneed, Lesley H.;Yang, Yang;He, Ruili
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.45-54
    • /
    • 2015
  • This paper describes a three-dimensional approach to modeling the nonlinear behavior of partial-depth precast prestressed concrete bridge decks under increasing static loading. Six full-size panels were analyzed with this approach where the damage plasticity constitutive model was used to model concrete. Numerical results were compared and validated with the experimental data and showed reasonable agreement. The discrepancy between numerical and experimental values of load capacities was within six while the discrepancy of mid-span displacement was within 10 %. Parametric study was also conducted to show that higher accuracy could be achieved with lower values of the viscosity parameter but with an increase in the calculation effort.

구성형태(構成形態)에 따른 파티클과 파이버로 제조(製造)한 패널의 물리적 및 기계적 성질 (Physical and Mechanical Properties of Panels Fabricated with Particle and Fiber by Composition Types)

  • 윤형운;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권2호
    • /
    • pp.9-22
    • /
    • 1992
  • The aim of this research was to investigate physical and mechanical properties of various composition panels, each fabricated with a ratio of fiber to particle of 2 to 10. Type A consisted of fiber-faces and particle-core in layered-mat system. Type B consisted of fiberboard-faces on particleboard-core. Type C consisted of fibers and particles in mixed-mat system. The results obtained from tests of bending strength, internal bond, screw holding strength and stability were as follows: 1. The bending strength and internal bonding of both the Type A panel and the Type B panel were higher than those of the Type C panel and three-layered particle board. 2. The mechanical properties of the Type C panel showed the lowest values of all composition methods. It seems that the different compression ratios of the particle and fiber interrupted the densification of the fibers when hot pressed. 3. The dimensional stability of layered-mat system panels consising of fiber-faces and particle-core was better the than control particleboard. 4. In composition methods of particle and fiber, layered-composition method was more resonable than mixed-composition. The Type B panel had the highest mechanical properties of all the composition types. 5. The Type A panel was considered the ideal composition method because of its resistance to delamination between the particle-layer and the fiber-layer and because of its lower adhesive content and more effective manufa cturing process.

  • PDF

공동주택 습식 진공 외단열시스템 성능 평가 (Performance Evaluation of Adhesively Fixed External Insulation and Finish System Using Vacuum Insulation Panels for Apartment Buildings)

  • 박시현;임재한;송승영
    • KIEAE Journal
    • /
    • 제13권6호
    • /
    • pp.45-53
    • /
    • 2013
  • For the target goal of Zero-energy House construction in 2025, the government announced that the insulation regulations will be continuously enhanced. It has been predicted that high-performance insulation materials, such as vacuum insulation panel (VIP), should be used to decrease the thickness of outer walls. The aim of this study was to evaluate the performance of adhesively fixed external insulation and finish system (EIFS) with VIP. The energy performance of a base model with conventional internal insulation system and three alternatives of EIFS with VIP were analyzed by three-dimensional heat transfer simulation. Construction cost and convenience of each alternative were also evaluated and compared. As results, effective alternatives in terms of each performance as well as overall performance considering the weighting factors of each performance were suggested.

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

Cylindrical bending of laminated cylindrical shells using a modified zig-zag theory

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • 제6권5호
    • /
    • pp.497-516
    • /
    • 1998
  • A relatively simple two-dimensional multilayered shell model is presented for predicting both global quantities and stress distributions across the thickness of multilayered thick shells, that is based on a third-order zig-zag approach. As for any zig-zag model, the layerwise kinematics is accounted for, with the stress continuity conditions at interfaces met a priori. Moreover, the shell model satisfies the zero transverse shear stress conditions at the upper and lower free surfaces of the shell, irrespective of the lay-up. By changing the parameters in the displacement model, some higher order shell models are obtained as particular cases. Although it potentially has a wide range of validity, application is limited to cylindrical shell panels in cylindrical bending, a lot of solutions of two-dimensional models based on rather different simplyfying assumptions and the exact three-dimensional elasticity solution being available for comparisons for this benchmark problem. The numerical investigation performed by the present shell model and by the shell models derived from it illustrates the effects of transverse shear modeling and the range of applicability of the simplyfying assumptions introduced. The implications of retaining only selected terms depending on the radius-to-thickness ratio are focused by comparing the present solutions to the exact one and to other two-dimensional solutions in literature based on rather different simplyfying assumptions.

대전류 통전시 배전반내의 열적 현상에 관한 연구 (Investigations on the Thermal Phenomena in High Current Electric Switchboard)

  • 이방욱;강종성;손종만;최원준;서정민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1051-1053
    • /
    • 1999
  • In this work, thermal phenomena and temperature rise due to thermal source in electric switchboard were investigated using analytical measures. Electric switchboards are assemblies of panels on which are mounted switches, circuit breakers, high current busbars, meter, fuses and terminals essential to the operation of electric equipment. It is very difficult to predict the temperature rise in switchboard due to the existence of several heat sources. To overcome this situations, we focused on the eddy current distribution on the panel of switchboard caused by high current busbars as a fundamental basis. And thermal sources including busbar and switchgear have been considered. Furthermore, thermal transfer phenomena in switchboard was considered theoretically. Finally, three-dimensional thermal model for eddy current analysis has been adopted and FEM analysis was conducted. As a result, three-dimensional numerical analysis found to be applicable to the analysis of thermal phenomena in switchboard.

  • PDF

Modeling of wind-induced fatigue of cold-formed steel sheet panels

  • Rosario-Galanes, Osvaldo;Godoy, Luis A.
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.237-259
    • /
    • 2014
  • Wind-induced failure around screwed connections has been documented in roof and wall cladding systems made with steel sheet cold-formed panels during high wind events. Previous research has found that low cycle fatigue caused by stress concentration and fluctuating wind loads is responsible for most such failures. A dynamic load protocol was employed in this work to represent fatigue under wind effects. A finite element model and fatigue criteria were implemented and compared with laboratory experiments in order to predict the fatigue failure associated with fluctuating wind loads. Results are used to develop an analytical model which can be employed for the fatigue analysis of steel cold-formed cladding systems. Existing three dimensional fatigue criteria are implemented and correlated with fatigue damage observed on steel claddings. Parametric studies are used to formulate suitable yet simple fatigue criteria. Fatigue failure is predicted in different configurations of loads, types of connections, and thicknesses of steel folded plate cladding. The analytical model, which correlated with experimental results reported in a companion paper, was validated for the fatigue life prediction and failure mechanism of different connection types and thicknesses of cold-formed steel cladding.