• 제목/요약/키워드: three-dimensional model, finite element method

검색결과 510건 처리시간 0.027초

하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발 (Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow)

  • 한건연;백창현;최승용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

전위 셀 구성모델을 결합한 유한요소법을 이용한 3차원 등통로각압출 공정 해석 (Analysis of Three Dimensional Equal Chanel Angular Pressing by Using the Finite Element Method in Conjunction with the Dislocation Cell Based Constitutive Model)

  • 윤승채;김형섭
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.699-706
    • /
    • 2009
  • Deformation behavior of pure aluminum during equal channel angular pressing (ECAP) was simulated using a three-dimensional version of the finite element method in conjunction with a constitutive model based on the dislocation density and cell evolution. The three-dimensional finite element analyses for the prediction of microstructural features, such as the variation of the dislocation density and the cell size with the number of ECAP, are reported. The calculated stress and strain and their distributions are also investigated for the route Bc ECAP processed pure aluminum. The results of finite element analyses are found to be in good agreement with experimental results for the dislocation cell size. Due to the accumulation of strain throughout the workpiece and an overall trend to saturation in cell size, a decrease of the difference in cell size with the number of passes (1~4) was predicted.

E-$\Omega$ 법을 이용한 3차익 교류 자장 해석 (Three-Dimensional Time Varing Magnetic Field Analysis: Using E-$\Omega$ Method)

  • 김동수;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.49-52
    • /
    • 1989
  • Some limits are in two-dimensional analysis by finite element method to electromagnetic machine having finite dimension. Therefore three-dimensional analysis by finite element method, which are modeling original form of models are needed in order to gain accurate solutions. This paper present three-dimensional time varing magnetic field analysis method using electric field E and magnetic scarlar potential $\Omega$, and examine sample model.

  • PDF

A two-dimensional hyperbolic spring model for mat foundation in clays subjected to vertical load

  • Der-Wen Chang;Tzu-Min Chou;Shih-Hao Cheng;Louis Ge
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.527-538
    • /
    • 2024
  • This study proposes a two-dimensional hyperbolic soil spring model for mat foundations in clays subjected to vertically uniform loads to simplify the complexity of three-dimensional finite element analysis on mat foundations. The solutions from three-dimensional finite element analysis were examined to determine the hyperbolic model parameters of the soil springs underneath the slab. Utilizing these model parameters, normalized functions across the middle section of the mat were obtained. The solutions from the proposed model, along with the approximate finite difference analysis of the mat in clays under vertical load, were found to be consistent with those from the three-dimensional finite element analysis. The authors conclude that the proposed method can serve as an alternative for the preliminary design of mat foundations.

베어링 지지 효과를 고려한 3 차원 로터동역학 해석 (Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects)

  • 박효근;김동현;김명국;전승배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석 (Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach)

  • 윤영묵;김승억;오진우;박정웅
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

연속 주조의 응고와 벌징에 관한 3차원 해석 (Three-dimensional Analysis for Solidification and Bulging of Continuously Cast)

  • 김영대;조종래;이부윤;하만영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.174-177
    • /
    • 2000
  • In this paper, The bulging behavior of the solidified shell in continuously cast slabs have been numerically analyzed using three-dimensional elasto-plastic and creep finite element method Three-dimensional model has been applied in order to investigate the effect of the narrow face shell on restraining the bulging deflection. Solidification analysis are carried out by two-dimensional finite difference method. In this way, strains occurring at the solidification front near the narrow face of the slab, as well as those occurring in the board face have been computed. The adequacy of the model has been checked against the experimental results. In addition, the effect of the slab width and casting speed on the bulging are discussed.

  • PDF

치아교정의 역학적 해석을 의한 유한요소 모델링 및 치아의 거동해석 (Finite Element Modeling and Mechanical Analysis of Orthodontics)

  • 허경헌;차경석;주진원
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.907-915
    • /
    • 2000
  • The movement of teeth and initial stress associated with the treatment of orthodontics have been successfully studied using the finite element method. To reduce the effort in preprocessing of finite element analysis, we developed two types of three-dimensional finite element models based on the standard teeth model. Individual malocclusions were incorporated in the finite element The movement of teeth and initial stress associated with the treatment of orthodontics have been successfully studied using the finite element method. To reduce the effort in preprocessing of finite element analysis, we developed two types of three-dimensional finite element models based on the standard teeth model. Individual malocclusions were incorporated in the finite element models by considering the measuring factors such as angulation, crown inclination, rotation and translations. The finite element analysis for the wire activation with a T-loop arch wire was carried out. Mechanical behavior on the movement and the initial stress for the malocclusion finite element model was shown to agree with the objectives of the actual treatment. Finite element models and procedures of analysis developed in this study would be suitably utilized for the design of initial shape of the wire and determination of activation displacements.

원자로 냉각재 배관 노즐의 2차원 축대칭 유한요소 모델 결정 (Determination of Two Dimensional Axisymmetric Finite Element Model for Reactor Coolant Piping Nozzles)

  • 최성남;김형남;장기상;김호중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.432-437
    • /
    • 2000
  • The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The the radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively.

  • PDF

인두기능의 3차원적 생체역학 모델에 관한 연구 (A study on the three-dimensional biomechanical model of the human pharyngeal function)

  • 김성민;김남현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1852-1855
    • /
    • 1997
  • A three-dimensional biomechanical modle is proposed in order to simulate human pharyngeal function based on the FEM(Finite Element Method) utilizing optimization procedure.

  • PDF